This paper presents a new theory of droplet formation during condensation of water on a hydrophilic surface. The theory uses hydration, electrostatic, van der Waals, and elastic strain interactions between a hydrophilic solid surface and a water film, and shows that contributions to the disjoining pressure are dominated by hydration forces for films thinner than 3 nm. The equilibrium film thickness is found to remain almost constant at about 0.5 nm for a wide range of relative humidity, although it increases sharply as the relative humidity approaches unity. The competition between strain energy on one hand, and hydration, van der Waals, and liquid-vapor surface tension on the other, induces instability for films thicker than a critical value. The critical wavelength of instability, Lcr is also predicted as a function of film thickness. The theory proposes that as the relative humidity increases, nucleation initially occurs in monolayer fashion due to strong hydration forces. Using nucleation thermodynamics it predicts a critical nucleus size, d*, and internuclei spacing, I, as a function of subcooling, ΔT, of the solid surface and shows that both length scales decrease with increasing subcooling. Since these monolayer nuclei are formed on the adsorbed water film, it is shown that when the internuclei spacing is larger than the critical wavelength, l > Lcr instability occurs in the film resulting in droplet formation. The theory predicts that beyond a certain value of subcooling, the interdroplet spacing is “choked” and cannot decrease further.

1.
Abraham
F. F.
,
1978
, “
The Interfacial Density Profile of a Lennard-Jones Fluid in Contact With a (100) Lennard-Jones Wall and Its Relationship to Idealized Fluid-Wall Systems
,”
J. Chem. Phys.
, Vol.
68
, No.
8
, pp.
3713
3716
.
2.
Baer, E., and McKelvey, J. M., 1958, “Heat Transfer in Dropwise Condensation,” Proc. of Symp. On Heat Transfer in Dropwise Condensation, University of Delaware, Newark, p. 24.
3.
Bankoff
S. G.
,
1990
, “
Dynamics and Stability of Thin Heated Liquid Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
538
545
.
4.
Burelbach
J. P.
,
Bankoff
S. G.
, and
Davis
S. H.
,
1988
, “
Nonlinear Stability of Evaporating/Condensing Liquid Films
,”
Journal of Fluid Mechanics
, Vol.
195
, pp.
463
494
.
5.
Dasgupta
S.
,
Kim
I. Y.
, and
Wayner
P. C.
,
1994
, “
Use of Kelvin-Clapeyron Equation to Model an Evaporating Curved Microfilm
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
1007
1015
.
6.
Derjaguin
B. V.
, and
Landau
L.
,
1941
,
Acta Physicochim. URSS
, Vol.
14
, pp.
633
662
.
7.
Erb, R. A., and Thelen, E., 1965, “Dropwise condensation,” 1st Int. Symp on Water Desalination, Washington DC, also Erb, R. A., Ph.D. dissertation, Temple University (1965).
8.
Eucken
A.
,
1937
,
Naturwissenschaften
, Vol.
25
, p.
209
209
.
9.
Gavish
M.
,
Popovitz-Biro
R.
,
Lahav
M.
, and
Leiserowitz
L.
,
1990
, “
Ice Nucleation by Alcohols Arranged in Monolayers at the Surface of Water Drops
,”
Science
, Vol.
250
, pp.
973
975
.
10.
Hobbs, P. V., 1974, Ice Physics, Clarendon Press, Oxford.
11.
Horn
R. G.
,
Smith
D. T.
, and
Haller
W.
,
1989
, “
Surface Forces and Viscosity of Water Measured Between Silica Sheets
,”
Chemical Physics Letters
, Vol.
162
, No.
4–5
, pp.
404
408
.
12.
Hu
J.
,
Xiao
X. D.
,
Ogletree
D. F.
, and
Salmeron
M.
,
1995
, “
Imaging the Condensation and Evaporation of Molecularly Thin Films of Water With Nanometer Resolution
,”
Science
, Vol.
268
, pp.
267
269
.
13.
Huisman
W. J.
,
Peters
J. F.
,
Zwanenburg
M. J.
,
deVries
S. A.
,
Derry
T. E.
,
Abernathy
D.
, and
vanderVeen
J. F.
,
1997
, “
Layering of a liquid metal in contact with a hard wall
,”
Nature
, Vol.
390
, No.
6658
, pp,
379
-
381
.
14.
Israelachvili, J. N., 1992, Intermolecular and Surface Forces, 2nd Ed., Academic Press, San Diego, CA.
15.
Israelachvili
J. N.
, and
Pashley
R. M.
,
1983
, “
Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces
,”
Nature
, Vol.
306
, pp.
249
250
.
16.
Jakob
M.
,
1936
, “
Heat Transfer in Evaporation and Condensation
,”
Mech. Engr.
, Vol.
58
, pp.
729
739
.
17.
Jonsson
B.
,
1981
, “
Monte Carlo Simulations of Liquid Water Between Two Rigid Walls
,”
Chem. Phys. Lett.
, Vol.
82
, No.
3
, pp.
520
525
.
18.
Majewski
J.
,
Popovitz-Biro
R.
,
Kjaer
K.
,
Als-Neilsen
J.
,
Lahav
M.
, and
Leiserowitz
L.
,
1994
, “
Toward a Determination of the Critical Size of Ice Nuclei. A Demonstration by Grazing Incidence X-ray Diffraction of Epitaxial Growth of Ice Under the C31H63OH Monolayer
,”
J. Phys. Chem.
, Vol.
98
, pp.
4087
4093
.
19.
Marcelja
S.
, and
Radic
N.
,
1976
, “
Repulsion of Interfaces due to Boundary Water
,”
Chemical Physics Letters
, Vol.
42
, No.
1
, pp.
129
130
.
20.
Marcelja
S.
,
Mitchell
D. J.
,
Ninham
B. W.
, and
Sculley
M. J.
,
1976
, “
Role of Solvent Structure in Solution Theory
,”
J. Chem. Soc. Faraday Trans. 2
, Vol.
73
, pp.
630
648
.
21.
Ohring, M., 1992, The Materials Science of Thin Films, Academic Press, San Diego, CA.
22.
Popovitz-Biro
P.
,
Wang
J. L.
,
Majewski
J.
,
Shavit
E.
,
Leiserowitz
L.
, and
Lahav
L.
,
1994
, “
Induced Freezing of Supercooled Water Into Ice by Self-Assembled Crystalline Monolayers of Amphiphilic Alcohols at the Air-Water Interface
,”
J. Am. Chem. Soc
, Vol.
116
, pp.
1179
1191
.
23.
Snook
I.
, and
van Megen
W.
,
1979
, “
Structure of Dense Liquids at Solid Intefaces
,”
J. Chem. Phys.
, Vol.
70
, No.
6
, pp.
3099
3105
.
24.
Spencer
B. J.
,
Voorhees
P. W.
, and
Davis
S. H.
,
1991
, “
Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films
,”
Physical Review Letters
, Vol.
67
, No.
26
, pp.
3696
3699
.
25.
Srolovitz
D. J.
,
1989
, “
On the Stability of Surfaces of Stressed Solids
,”
Acta Metall
, Vol.
37
, No.
2
, pp.
621
625
.
26.
Stanley
H. E.
, and
Teixeira
J.
,
1980
, “
Interpretation of the Unusual Behavior of H2O and D2O at Low Temperatures: Tests of a Percolation Model
,”
Journal of Chemical Physics
, Vol.
73
, No.
7
, pp.
3404
3422
.
27.
Sugawara, S., and Katsuta, K., 1966, “Fundamental Study of Dropwise Condensation,” Proc. 3rd Int. Heat Transfer Conference, Vol. 2, pp. 354–361.
28.
Turnbull
D.
, and
Vonnegut
B.
,
1952
,
Ind. Engng. Chem.
, Vol.
44
, pp.
1292
1298
.
29.
Umur
A.
, and
Griffith
P.
,
1965
, “
Mechanism of Dropwise Condensation
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
87
, pp.
275
282
.
30.
Vervew, E. J. W., and Overbeek, J. Th. G., 1948, Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam.
31.
Vook
R. W.
,
1982
, “
Structure and Growth of Thin Films
,”
International Metals Review
, Vol.
27
, No.
4
, pp.
209
245
.
32.
Wayner
P. C.
,
Kao
Y. K.
, and
La Croix
L. V.
,
1976
, “
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
487
492
.
33.
Welch, J. F., and Westwater, J. W., 1961, “Microscopic Study of Dropwise Condensation,” International Developments in Heat Transfer, Part II, ASME New York.
34.
Xia
X.
, and
Berkowitz
M. L.
,
1995
, “
Electric-Field Induced Restructuring of Water at a Platinum-Water Interface: A Molecular Dynamics Computer Simulation
,”
Phys. Rev. Lett.
, Vol.
74
, No.
16
, pp.
3193
3196
.
This content is only available via PDF.
You do not currently have access to this content.