A mathematical model for the radiative cooling of a semitransparent molten glass jet with temperature-dependent viscosity has been developed and is implemented numerically. The axial velocity and jet diameter variations along the length of the jet, the axial bulk mean temperature distributions, and the centerline-to-surface glass temperature distributions are determined for different processing conditions. Comparisons are also made between the semitransparent predictions, which are based on a spectral discrete ordinates model, and predictions for an opaque medium.
Issue Section:
Featured Section—Heat Transfer in Manufacturing
1.
Ball
K. S.
Song
M.
Gomon
M.
Silva
M. W.
Taleff
E. M.
Powers
B. M.
Bergman
T. L.
1996
, “Canister Filling with a Molten Glass Jet
,” Bulletin of the American Physical Society
, Vol. 41
, p. 1749
1749
.2.
Ball
K. S.
Song
M.
Gomon
M.
Silva
M. W.
Taleff
E. M.
Powers
B. M.
Bergman
T. L.
1997
, “Canister Filling With a Molten Glass Jet
,” ASME JOURNAL OF HEAT TRANSFER
, Vol. 119
, p. 204
204
.3.
Cruickshank
J. O.
Munson
B. R.
1981
, “Viscous Fluid Buckling of Plane and Axisymmetric Jets
,” Journal of Fluid Mechanics
, Vol. 113
, 221
–239
.4.
Field, R. E., 1989, “Spectra Remote Sensing of the Temperature Distribution in Glass,” Ph.D. thesis, Purdue University, West Lafayette, IN.
5.
Field
R. E.
Viskanta
R.
1990
, “Measurement and Prediction of the Dynamic Temperature Distributions in Soda-Lime Glass Plates
,” Journal of the American Ceramic Society
, Vol. 73
, pp. 2047
–2053
.6.
Glicksman
L. R.
1968
a, “The Cooling of Glass Fibres
,” Glass Technology
, Vol. 9
, pp. 131
–138
.7.
Glicksman
L. R.
1968
b, “The Dynamics of a Heated Free Jet of Variable Viscosity at Low Reynolds Numbers
,” ASME Journal of Basic Engineering
, Vol. 90
, pp. 343
–354
.8.
Gomon, M., 1997, “Experimental Study of Highly Viscous Impinging Jets,” Masters thesis, University of Texas at Austin, Austin, TX.
9.
Issa, J., Jaluria, Y., Polymeropoulos, C. E., and Yin, Z., 1995, “Radiation Heat Transfer Within an Optical Fiber Draw Tower Furnace,” Proceedings of 30th 1995 National Heat Transfer Conference, Vol. 4, R. L. Mahajan, ed., ASME, New York, pp. 3–11.
10.
Joseph
D. D.
Nguyen
K.
Matta
J. E.
1983
, “Jets into Liquid Under Gravity
,” Journal of Fluid Mechanics
, Vol. 128
, pp. 443
–468
.11.
Kaminski, D., 1995, “Thermal Transport in Optical Fiber Manufacturing,” Radiative Transfer-I: Proceedings of the First International Symposium on Radiation Transfer, M. P. Menguc, ed., Begell House, New York, pp. 667–681.
12.
Lee, S. H. K., and Jaluria, Y., 1993, “Radiative Transport in the Cylindrical Furnace for Optical Fiber Drawing,” Transport Phenomena in Nonconventional Manufacturing and Materials Processing, C. L. Chan et al., eds., ASME, New York, pp. 43–58.
13.
Lee
S. H. K.
Jaluria
Y.
1996
, “Effects of Variable Properties and Viscous Dissipation During Optical Fiber Drawing
,” ASME JOURNAL OF HEAT TRANSFER
, Vol. 118
, pp. 350
–358
.14.
Marples
J. A. C.
1988
, “The Preparation, Properties, and Disposal of Vitrified High Level Waste from Nuclear Fuel Reprocessing
,” Glass Technology
, Vol. 29
, pp. 230
–247
.15.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
16.
National Academy of Sciences, 1994, Management and Disposition of Excess Weapons Plutonium, National Academy Press, Washington, DC.
17.
Nayfeh
A. H.
1970
, “Nonlinear Stability of a Liquid Jet
,” Physics of Fluids
, Vol. 13
, pp. 841
–847
.18.
Paek
U. C.
Kurkjian
C. R.
1975
, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers
,” Journal of the American Ceramic Society
, Vol. 58
, pp. 330
–335
.19.
Paek
U. C.
Runk
R. B.
1978
, “Physical Behavior of the Neck-Down Region During Furnace Drawing of Silica Fibers
,” Journal of Applied Physics
, Vol. 49
, pp. 4417
–4422
.20.
Rubin
M.
1985
, “Optical Properties of Soda Lime Silica Glasses
,” Solar Energy Materials
, Vol. 12
, pp. 275
–288
.21.
Song, M., and Viskanta, R., 1996, “Discrete Ordinates Solution of Axisymmetric Radiative Transfer Within a Condensed Semitransparent Medium Having Specularly Reflecting Boundaries,” ASME Proceedings of the 31st National Heat Transfer Conference, Vol. 3, R. D. Skocypec et al., ed., ASME, New York, pp. 55–62.
22.
Soper, P. D., and Bickford, D. F., 1982, “Physical Properties of Frit 165/Waste Glasses,” DPST-82-899, Technical Division-Savannah River Laboratory, Aiken, SC.
23.
Sterling
A. M.
Sleicher
C. A.
1975
, “The Instability of Capillary Jets
,” Journal of Fluid Mechanics
, Vol. 68
, pp. 477
–495
.24.
Taylor
G. I.
1959
, “The Dynamics of Thin Sheets of Fluid, III. Disintegration of Fluid Sheets
,” Proceedings of the Royal Society of London
, Vol. A253
, pp. 313
–321
.25.
Viskanta
R.
1994
, “Review of Three-Dimensional Mathematical Modeling of Glass Melting
,” Journal of Non-Crystalline Solids
, Vol. 177
, pp. 347
–362
.26.
Wilson
D. E.
1986
, “A Similarity Solution for the Axisymmetric Viscous-Gravity Jet
,” Physics of Fluids
, Vol. 29
, pp. 632
–639
.27.
Yin
Z.
Jaluria
Y.
1997
, “Zonal Method to Model Radiative Transport in an Optical Fiber Drawing Furnace
,” ASME JOURNAL OF HEAT TRANSFER
, Vol. 119
, 597
–603
.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.