This is an experimental numerical and theoretical study of the heat transfer on a pin-finned plate exposed to an impinging air stream. The pin fins are aligned with the air approach velocity. The base plate and the fin cross section are square. It is demonstrated experimentally that the thermal conductance between the plate and the air stream can be maximized by selecting the fin-to-fin spacing S. Next, a simplified numerical model is used to generate a large number of optimal spacing and maximum heat transfer data for various configurations, which differ with respect to fin length (H), fin thickness (D), base plate size (L), fluid type (Pr), and air velocity (ReL). Finally, the behavior of the optimal spacing data is explained and correlated theoretically based on the intersection of asymptotes method. The recommended correlations for optimal spacing, Sopt/L ≅ 0.81 Pr−0.25 ReL−0.32, and maximum thermal conductance, (q/ΔT)max/kaH ≅ 1.57 Pr0.45 ReL0.69 (L/D)0.31, cover the range D/L = 0.06 − 0.14, H/L = 0.28−0.56, Pr = 0.72−7, ReD = 10−700, and ReL = 90−6000.

1.
Anand
N. K.
,
Kim
S. H.
, and
Fletcher
L. S.
,
1992
, “
The Effect of Plate Spacing on Free Convection Between Heated Parallel Plates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
515
518
.
2.
Bar-Cohen
A.
, and
Rohsenow
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
106
, pp.
116
123
.
3.
Bejan, A., 1984, Convection Heat Transfer, Wiley, New York, problem 11, p. 157; Solutions Manual, pp. 93–95.
4.
Bejan
A.
, and
Sciubba
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
International Journal of Heat and Mass Transfer
, Vol.
35
, pp.
3259
3264
.
5.
Bejan, A., 1995, Convection Heat Transfer, 2nd ed., Wiley, New York, pp. 154–155; Solutions Manual, pp. (3-36)–(3-40)
6.
Bejan, A., Tsatsaronis, G., and Moran, M., 1996, Thermal Design and Optimization, Wiley, New York.
7.
Chu, R. C., and Simons, R. E., 1994, “Cooling Technology for High Performance Computers: IBM Sponsored University Research,” in: S. Kakac, H. Yu¨ncu¨, and Hijikata, K., eds., Cooling of Electronic Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 97–122.
8.
FIDAP, 1993, Theory Manual, Fluid Dynamics International, Evanston, IL, V.7.0.
9.
Heindel, T. J., Ramadhyani, S., Incropera, F. P., and Campo, A., 1992, “Surface Enhancement of a Heat Source Exposed to a Circular Liquid Jet With Annular Collection of the Spent Fluid,” ASME HTD-Vol. 206-2, pp. 111–118.
10.
Kamath, V., 1994, “Air Injection and Convection Cooling of Multi-Chip Modules: A Computational Study,” Proc. Inter Society Conference on Thermal Phenomena in Electronic Systems (ITHERM IV), Washington, DC, May 4–7, pp. 83–90.
11.
Knight
R. W.
,
Goodling
J. S.
, and
Hall
D. J.
,
1991
, “
Optimal Thermal Design of Forced Convection Heat Sinks—Analytical
,”
Journal of Electronic Packaging
, Vol.
113
, pp.
313
321
.
12.
Larson
E. D.
, and
Sparrow
E. M.
,
1982
, “
Performance Comparisons Among Geometrically Different Pin-Fin Arrays Situated in an Oncoming Longitudinal Flow
,”
International Journal of Heat and Mass Transfer
, Vol.
25
, pp.
723
725
.
13.
Mansuria, M. S., and Kamath, V., 1994, “Design Optimization of a High-Performance Heat-Sink/Fan Assembly,” ASME HTD-Vol. 292, pp. 95–103.
14.
Matsushima
H.
,
Yanagida
T.
, and
Kondo
Y.
,
1992
, “
Algorithm for Predicting the Thermal Resistance of Finned LSI Packages Mounted on a Circuit Board
,”
Heat Transfer Japanese Research
, Vol.
21
(
5
), pp.
504
517
.
15.
Mereu
S.
,
Sciubba
E.
, and
Bejan
A.
,
1993
, “
The Optimal Cooling of a Stack of Heat Generating Boards With Fixed Pressure Drop, Flowrate or Pumping Power
,”
International Journal of Heat and Mass Transfer
, Vol.
36
, pp.
3677
3686
.
16.
Moffat
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Thermal Fluid Sci.
, Vol.
1
, pp.
3
17
.
17.
Moffat, R. J., and Ortega, A., 1988, “Direct Air Cooling of Electronic Components,” in: Advances in Thermal Modeling of Electronic Components and Systems Vol. I, A. Bar-Cohen and A. D. Kraus, eds., Hemisphere, New York, pp. 129–282.
18.
Morega
Al. M.
, and
Bejan
A.
,
1994
, “
The Optimal Spacing of Parallel Boards With Discrete Heat Sources Cooled by Laminar Forced Convection
,”
Numerical Heat Transfer
, Part A, Vol.
25
, pp.
373
392
.
19.
Morega
A. M.
,
Bejan
A.
, and
Lee
S. W.
,
1995
, “
Free Stream Cooling of a Stack of Parallel Plates
,”
International Journal of Heat and Mass Transfer
, Vol.
38
, pp.
519
531
.
20.
Nakayama, W., Matsushima, H., and Goel, P., 1988, “Forced Convective Heat Transfer From Arrays of Finned Packages,” in: Cooling Technology for Electronic Equipment, W. Aung, ed., pp. 195–210, Hemisphere, New York.
21.
Nakayama, W., 1994, “Information Processing and Heat Transfer Engineering: Some Generic Views on Future Research Needs,” in: S. Kakac, H. Yu¨ncu¨, and K. Hijikata, eds., Cooling of Electronic Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 911–943.
22.
Peterson
G. P.
, and
Ortega
A.
,
1990
, “
Thermal Control of Electronic Equipment and Devices
,”
Advances in Heat Transfer
, Vol.
20
, pp.
181
314
.
23.
Sathe, S., Kelkar, K. M., Karki, K. C., Tai, C., Lamb, C., and Patankar, S. V., 1983, “Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink,” ASME EEP-Vol. 4–2, pp. 893–898.
24.
Sparrow
E. M.
, and
Larson
E. D.
,
1982
, “
Heat Transfer From Pin-Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow
,”
International Journal of Heat and Mass Transfer
, Vol.
25
, pp.
603
614
.
25.
Sparrow
E. M.
,
Suopys
A. P.
, and
Ansari
M. A.
,
1984
, “
Effect of Inlet, Exit, and Fin Geometry on Pin Fins Situated in a Turning Flow
,”
International Journal of Heat and Mass Transfer
, Vol.
27
, pp.
1039
1054
.
26.
Sullivan, P. F., Ramadhyani, S., and Incropera, F. P., 1992a, “Extended Surfaces to Enhance Impingement Cooling With Single Circular Liquid Jets,” Advances in Electronic Packages, ASME, New York, pp. 207–215.
27.
Sullivan, P. F., Ramadhyani, S., and Incropera, F. P., 1992b, “Use of Smooth and Roughened Spreader Plates to Enhance Impingement Cooling of Small Heat Sources With Circular Liquid Jets,” ASME HTD-Vol. 206–2, pp. 103–110.
28.
Wadsworth
D. C.
, and
Mudawar
I.
,
1992
, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux from an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
764
768
.
29.
Wirtz
R. A.
,
Chen
W.
, and
Zhou
R.
,
1994
, “
Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks
,”
ASME Journal of Electronic Packaging
, Vol.
116
, pp.
206
211
.
30.
Zukauskas, A., 1987, “Convective Heat Transfer in Cross Flow,” Handbook of Single-Phase Convective Heat Transfer, S. Kakae, R. K. Shah, and W. Aung, eds., Wiley, New York, Chap. 6.
This content is only available via PDF.
You do not currently have access to this content.