Successful analysis and modeling of micro heat pipes requires a complete understanding of the vapor–liquid interface. A thermodynamic model of the vapor–liquid interface in micro heat pipes has been formulated that includes axial pressure and temperature differences, changes in local interfacial curvature, Marangoni effects, and the disjoining pressure. Relationships were developed for the interfacial mass flux in an extended meniscus, the heat transfer rate in the intrinsic meniscus, the “thermocapillary” heat-pipe limitation, as well as the nonevaporating superheated liquid film thickness that exists between adjacent menisci and occurs during liquid dry out in the evaporator. These relationships can be used to define quantitative restrictions and/or requirements necessary for proper operation of micro heat pipes. They also provide fundamental insight into the critical mechanisms required for proper heat pipe operation.

1.
Adamson, A. W., 1990, Physical Chemistry of Surfaces, 5th ed., Wiley, Los Angeles, CA.
2.
Ayyaswamy
P. S.
,
Catton
I.
, and
Edwards
D. K.
,
1974
, “
Capillary Flow in Triangular Grooves
,”
ASME Journal of Applied Mechanics
, Vol.
41
, pp.
332
336
.
3.
Babin
B. R.
,
Peterson
G. P.
, and
Wu
D.
,
1990
, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
595
601
.
4.
Brand, L., 1948, Vector and Tensor Analysis, Wiley, New York.
5.
Carey, V. P., 1992, Liquid-Vapor Phase Change Phenomena, Hemisphere Publishing Corp., Washington, DC.
6.
Chi, S. W., 1976, Heat Pipe Theory and Practice, McGraw-Hill, New York.
7.
DasGupta
S.
,
Schonberg
J. A.
, and
Wayner
P. C.
,
1993
, “
Investigation of an Evaporating Extended Meniscus Based on the Augmented Young—LaPlace Equation
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
201
208
.
8.
Duncan, A. B., 1993, “An Experimental and Analytical Evaluation of Etched Micro Heat Pipes,” Ph.D. Dissertation, Texas A&M University, College Station, TX.
9.
Dunn, P. D., and Reay, D. A., 1982, Heat Pipes, 3rd ed., Pergamon Press, New York.
10.
Israelachvili, J. N., 1985, Intermolecular and Surface Forces, Academic Press, London.
11.
Ivanov, I. B., 1988, Thin Liquid Films: Fundamentals and Applications, Marcel Dekker, Inc., New York.
12.
Khrustalev, D., and Faghri, A., 1993, “Thermal Analysis of a Micro Heat Pipe,” ASME HTD-Vol. 236, pp. 19–30; accepted for publication in the ASME JOURNAL OF HEAT TRANSFER.
13.
Kucherov
R. Y.
, and
Rikenglaz
L. E.
,
1960
, “
The Problem of Measuring the Condensation Coefficient
,”
Doklady Nauk. SSSR
, Vol.
133
, No.
5
, pp.
1130
1131
.
14.
Longtin, J. P., 1991, “Analysis and Testing of Etched Micro Heat Pipes,” M.S. Thesis, University of Cincinnati, Cincinnati, OH.
15.
Mallik, A. K., and Peterson, G. P., 1992, “On the Use of Micro Heat Pipes as an Integral Part of Semiconductor Devices,” AMSE Journal of Electronic Packaging, accepted for publication.
16.
Mills, A. F., 1965, “The Condensation of Steam at Low Pressure,” Technical Report on NSF GP-2520, Series No. 6, Issue No. 39, Space Sciences Laboratory, University of California, Berkeley.
17.
Peterson, G. P., Duncan, A. B., Ahmed, A. K., Mallik, A. K., and Weichold, M. H., 1991, “Experimental Investigation of Micro Heat Pipes in Silicon,” ASME DSC-Vol. 32, pp. 341–348.
18.
Peterson
G. P.
,
Duncan
A. B.
, and
Weichold
M. H.
,
1993
, “
Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
751
756
.
19.
Stephan
P. C.
, and
Busse
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
, Vol.
35
, No.
2
, pp.
383
391
.
20.
Sujanani
M.
, and
Wayner
P. C.
,
1992
, “
Transport Processes and Interfacial Phenomena in an Evaporating Meniscus
,”
Chem. Eng. Comm.
, Vol.
118
, pp.
89
110
.
21.
Swanson
L. W.
, and
Herdt
G. C.
,
1992
, “
Model of the Evaporating Meniscus in a Capillary Tube
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
434
441
.
22.
Truong
J. G.
, and
Wayner
P. C.
,
1987
, “
Effects of Capillary and Van der Waals Dispersion Forces on the Equilibrium Profile of a Wetting Liquid: Theory and Experiment
,”
J. Chem. Phys.
, Vol.
87
, No.
7
, pp.
4180
4188
.
23.
Wayner
P. C.
, and
Croccio
C. L.
,
1971
, “
Heat and Mass Transfer in the Vicinity of the Triple Interline of a Meniscus
,”
AIChE J.
, Vol.
17
, No.
3
, pp.
569
574
.
24.
Wayner
P. C.
,
Kao
Y. K.
, and
LaCroix
L. V.
,
1976
, “
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
487
492
.
25.
Wayner
P. C.
,
1982
, “
Adsorption and Capillary Condensation at the Contact Line in Change of Phase Heat Transfer
,”
Int. J. Heat Mass Transfer
, Vol.
25
, No.
5
, pp.
707
713
.
26.
Wayner
P. C.
,
1991
, “
The Effects of Interfacial Mass Transport on Flow in Thin Liquid Films
,”
Colloids and Surfaces
, Vol.
52
, pp.
71
84
.
27.
Wu
D.
, and
Peterson
G. P.
,
1991
, “
Investigation of the Transient Characteristics of a Micro Heat Pipe
,”
AIAA Journal of Thermophysics and Heat Transfer
, Vol.
5
, No.
2
, pp.
129
134
.
28.
Wu
D.
,
Peterson
G. P.
, and
Chang
W. S.
,
1991
, “
Transient Experimental Investigation of Micro Heat Pipes
,”
AIAA J. of Thermophysics and Heat Transfer
, Vol.
5
, No.
4
, pp.
539
545
.
29.
Xu
X.
, and
Carey
V. P.
,
1990
, “
Film Evaporation From a Micro-Grooved Surface—An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
AIAA J. of Thermophysics and Heat Transfer
, Vol.
4
, No.
4
, pp.
512
520
.
This content is only available via PDF.
You do not currently have access to this content.