Graphical Abstract Figure

Variation of greenhouse gas emissions with changing gaseous fuel energy fraction and hydrogen blending ratio.

Graphical Abstract Figure

Variation of greenhouse gas emissions with changing gaseous fuel energy fraction and hydrogen blending ratio.

Close modal

Abstract

As a carbon-free hydrogen carrier, ammonia is easy to store, handle, and distribute compared to hydrogen itself. Switching from diesel to green ammonia in heavy-duty compression ignition engines dominating the power generation of freight transportation industry has the potential to reduce greenhouse gas (GHG) emissions. However, due to the low flame speed and presence of fuel-bound nitrogen, ammonia combustion may result in certain unburned ammonia slip and nitrous oxide (N2O) emissions, which offsets its zero-carbon advantage in applications. In this paper, an investigation on the influence of hydrogen blending on ammonia slip and emissions of nitrogen oxide (NO), N2O, and GHG in a heavy-duty ammonia–diesel dual fuel engine is experimentally conducted at a medium engine load, various hydrogen blending ratios, and different gaseous fuel energy fractions. The results reveal that hydrogen blending does help significantly reduce ammonia slip. However, hydrogen blending does not help reduce N2O emissions at relatively lower gaseous fuel energy fractions that result in lower equivalence ratio for hydrogen/ammonia mixture but does help reduce N2O emissions at relatively larger gaseous fuel energy fractions. As a result, hydrogen blending does not help reduce GHG emissions at relatively lower gaseous fuel energy fractions, but does help at higher gaseous fuel energy fractions. Blending of a small amount of hydrogen significantly improves engine efficiency, but the effect of further increasing hydrogen blending ratio on engine efficiency is insignificant. A side effect of hydrogen blending is that it increases NO emissions since it not only increases combustion temperature but also promotes the NO formation via fuel route during ammonia combustion.

References

1.
Environment and Climate Change Canada
,
2024
, “
Canadian Environmental Sustainability Indicators: Greenhouse Gas Emissions Greenhouse Gas Emissions
,” Environment and Climate Change Canada, Toronto, ON, Canada, accessed Dec. 30, 2024, https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions.html
2.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
3.
Dimitriou
,
P.
, and
Javaid
,
R.
,
2020
, “
A Review of Ammonia as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7098
7118
.10.1016/j.ijhydene.2019.12.209
4.
Xiao
,
H.
,
Lai
,
S.
,
Valera-Medina
,
A.
,
Li
,
J.
,
Liu
,
J.
, and
Fu
,
H.
,
2020
, “
Study on Counterflow Premixed Flames Using High Concentration Ammonia Mixed With Methane
,”
Fuel
,
275
, p.
117902
.10.1016/j.fuel.2020.117902
5.
Yu
,
X.
,
Hashimoto
,
G.
,
Hadi
,
K.
,
Hashimoto
,
N.
,
Hayakawa
,
A.
,
Kobayashi
,
H.
, and
Fujita
,
O.
,
2020
, “
Turbulent Burning Velocity of Ammonia/Oxygen/Nitrogen Premixed Flame in O2-Enriched Air Condition
,”
Fuel
,
268
, p.
117383
.10.1016/j.fuel.2020.117383
6.
Guo
,
H.
,
Liko
,
B.
,
Luque
,
L.
, and
Littlejohns
,
J.
,
2018
, “
Combustion Performance and Unburned Hydrocarbon Emissions of a Natural Gas – Diesel Dual Fuel Engine at a Low Load Condition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112801
.10.1115/1.4039758
7.
Yousefi
,
A.
,
Guo
,
H.
, and
Birouk
,
M.
,
2019
, “
Effect of Diesel Injection Timing on the Combustion of Natural Gas/Diesel Dual-Fuel Engine at Low-High Load and Low-High Speed Conditions
,”
Fuel
,
235
, pp.
838
846
.10.1016/j.fuel.2018.08.064
8.
Reiter
,
A. J.
, and
Kong
,
S. C.
,
2008
, “
Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions
,”
Energy Fuels
,
22
(
5
), pp.
2963
2971
.10.1021/ef800140f
9.
Reiter
,
A. J.
, and
Kong
,
S. C.
,
2011
, “
Combustion and Emissions Characteristics of Compression-Ignition Engine Using Dual Ammonia-Diesel Fuel
,”
Fuel
,
90
(
1
), pp.
87
97
.10.1016/j.fuel.2010.07.055
10.
Frost
,
J.
,
Tall
,
A.
,
Sheriff
,
A. M.
,
Schonborn
,
A.
, and
Hellier
,
P.
,
2021
, “
An Experimental and Modelling Study of Dual Fuel Aqueous Ammonia and Diesel Combustion in a Single Cylinder Compression Ignition Engine
,”
Int. J. Hydrogen Energy
,
46
(
71
), pp.
35495
35510
.10.1016/j.ijhydene.2021.08.089
11.
Niki
,
Y.
,
Nitta
,
Y.
,
Sekiguchi
,
H.
, and
Hirata
,
K.
,
2018
, “
Emission and Combustion Characteristics of Diesel Engine Fumigated With Ammonia
,”
ASME
Paper No. ICEF2018-9634.10.1115/ICEF2018-9634
12.
Niki
,
Y.
,
Nitta
,
Y.
,
Sekiguchi
,
H.
, and
Hirata
,
K.
,
2019
, “
Diesel Fuel Multiple Injection Effects on Emission Characteristics of Diesel Engine Mixed Ammonia Gas Into Intake Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061020
.10.1115/1.4042507
13.
Yousefi
,
A.
,
Guo
,
H.
,
Dev
,
S.
,
Liko
,
B.
, and
Lafrance
,
S.
,
2022
, “
Effects of Ammonia Energy Fraction and Diesel Injection Timing on Combustion and Emissions of an Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
314
, p.
122723
.10.1016/j.fuel.2021.122723
14.
Yousefi
,
A.
,
Guo
,
H.
,
Dev
,
S.
,
Liko
,
B.
, and
Lafrance
,
S.
,
2022
, “
A Study on Split Diesel Injection on Thermal Efficiency and Emissions of an Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
316
, p.
123412
.10.1016/j.fuel.2022.123412
15.
Nadimi
,
E.
,
Przybyła
,
G.
,
Emberson
,
D.
,
Løvås
,
T.
,
Ziołkowski
,
Ł.
, and
Adamczyk
,
W.
,
2022
, “
Effects of Using Ammonia as a Primary Fuel on Engine Performance and Emissions in an Ammonia/Biodiesel Dual/Fuel CI Engine
,”
Int. J. Energy Res.
,
46
(
11
), pp.
15347
15361
.10.1002/er.8235
16.
Nadimi
,
E.
,
Przybyła
,
G.
,
Lewandowski
,
M. T.
, and
Adamczyk
,
W.
,
2023
, “
Effects of Ammonia on Combustion, Emissions, and Performance of the Ammonia/Diesel Dual-Fuel Compression Ignition Engine
,”
J. Energy Inst.
,
107
, p.
101158
.10.1016/j.joei.2022.101158
17.
Zaher
,
M. H.
,
Yousefi
,
A.
,
Dadsetan
,
M.
,
Liko
,
B.
,
Lafrance
,
S.
,
Guo
,
H.
, and
Thomson
,
M. J.
,
2023
, “
Characterization of Soot Emissions Formed in a Compression Ignition Engine Cofired by Ammonia and Diesel
,”
Fuel
,
349
, p.
128715
.10.1016/j.fuel.2023.128715
18.
Ichikawa
,
A.
,
Hayakawa
,
A.
,
Kitagawa
,
Y.
,
Somarathne
,
K. D. K. A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Hydrogen/Air Premixed Flames at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
9570
9578
.10.1016/j.ijhydene.2015.04.024
19.
Gotama
,
G. J.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
,
Kanoshima
,
R.
,
Hayashi
,
M.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2022
, “
Measurement of the Laminar Burning Velocity and Kinetics Study of the Importance of the Hydrogen Recovery Mechanism of Ammonia/Hydrogen/Air Premixed Flames
,”
Combust. Flame
,
236
, p.
111753
.10.1016/j.combustflame.2021.111753
20.
Mei
,
B.
,
Zhang
,
J.
,
Shi
,
X.
,
Xi
,
Z.
, and
Li
,
Y.
,
2021
, “
Enhancement of Ammonia Combustion With Partial Fuel Cracking Strategy: Laminar Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures Up to 10 Atm
,”
Combust. Flame
,
231
, p.
111472
.10.1016/j.combustflame.2021.111472
21.
Hayakawa
,
A.
,
Hayashi
,
M.
,
Kovaleva
,
M.
,
Gotama
,
G. J.
,
Okafor
,
E. C.
,
Colson
,
S.
,
Mashruk
,
S.
,
Valera-Medina
,
A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2023
, “
Experimental and Numerical Study of Product Gas and N2O Emission Characteristics of Ammonia/Hydrogen/Air Premixed Laminar Flames Stabilized in a Stagnation Flow
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
1625
1633
.10.1016/j.proci.2022.08.124
22.
Mashruk
,
S.
,
Zitouni
,
S. E.
,
Brequigny
,
P.
,
Mounaim-Rousselle
,
C.
, and
Valera-Medina
,
A.
,
2022
, “
Combustion Performances of Premixed Ammonia/Hydrogen/Air Laminar and Swirling Flames for a Wide Range of Equivalence Ratios
,”
Int. J. Hydrogen Energy
,
47
(
97
), pp.
41170
41182
.10.1016/j.ijhydene.2022.09.165
23.
Wang
,
D.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
, and
Wang
,
Z.
,
2021
, “
Numerical Study of the Premixed Ammonia/Hydrogen Combustion Under Engine-Relevant Conditions
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
2667
2683
.10.1016/j.ijhydene.2020.10.045
24.
Liu
,
X.
,
Tang
,
Q.
, and
Im
,
H. G.
,
2024
, “
Enhancing Ammonia Engine Efficiency Through Pre-Chamber Combustion and Dual-Fuel Compression Ignition Techniques
,”
J. Cleaner Prod.
,
436
, p.
140622
.10.1016/j.jclepro.2024.140622
25.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I. F.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
26.
Kuznetsov
,
M.
,
Kobelt
,
S.
,
Grune
,
J.
, and
Jordan
,
T.
,
2012
, “
Flammability Limits and Laminar Flame Speed of Hydrogen–Air Mixtures at Sub-Atmospheric Pressures
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17580
17588
.10.1016/j.ijhydene.2012.05.049
27.
Zabetaki
,
M. G.
,
1965
, “
Flammability Characteristics of Combustible Gases and Vapors
,”
Bureau of Mines
,
Pittsburgh, PA
, Report No.
BM-BULL-627
.https://shepherd.caltech.edu/EDL/PublicResources/flammability/USBM-627_30MB.pdf
28.
Aleiferis
,
P. G.
, and
Rosati
,
M. F.
,
2012
, “
Controlled Autoignition of Hydrogen in a Direct-Injection Optical Engine
,”
Combust. Flame
,
159
(
7
), pp.
2500
2515
.10.1016/j.combustflame.2012.02.021
29.
Zitouni
,
S.
,
Brequigny
,
P.
, and
Mounaïm-Rousselle
,
C.
,
2023
, “
Infiuence of Hydrogen and Methane Addition in Laminar Ammonia Premixed fiame on Burning Velocity, Lewis Number and Markstein Length
,”
Combust. Flame
,
253
, p.
112786
.10.1016/j.combustflame.2023.112786
30.
Li
,
H.
,
Liu
,
S.
,
Liew
,
C.
,
Gatts
,
T.
,
Wayne
,
S.
,
Clark
,
N.
, and
Nuszkowski
,
J.
,
2017
, “
An Investigation of the Combustion Process of a Heavy-Duty Dual Fuel Engine Supplemented With Natural Gas or Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
5
), pp.
3352
3362
.10.1016/j.ijhydene.2016.12.115
31.
Mashruk
,
S.
,
Kovaleva
,
M.
,
Alnasif
,
A.
,
Chong
,
C. T.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
, and
Valera-Medina
,
A.
,
2022
, “
Nitrogen Oxide Emissions Analyses in Ammonia/Hydrogen/Air Premixed Swirling Flames
,”
Energy
,
260
, p.
125183
.10.1016/j.energy.2022.125183
32.
Duynslaegher
,
C.
,
Jeanmart
,
H.
, and
Vandooren
,
J.
,
2009
, “
Flame Structure Studies of Premixed Ammonia/Hydrogen/Oxygen/Argon Flames: Experimental and Numerical Investigation
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1277
1284
.10.1016/j.proci.2008.06.036
33.
Myhre
,
G.
,
Shindell
,
D.
,
Bréon
,
F. M.
,
Collins
,
W.
,
Fuglestvedt
,
J.
,
Huang
,
J.
,
Koch
,
D.
, et al.,
2013
,
Climate Change 2013: The Physical Science Basis
,
Cambridge University Press
,
Cambridge, UK, New York
.https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf
You do not currently have access to this content.