Abstract

The operational capabilities of turbofan engines encounter limitations due to instabilities arising from tightly coupled interactions among aerodynamics, acoustics, and structural mechanics. Modern fans and compressors exhibit non-synchronous vibration (NSV), leading to safety-critical blade oscillations. In contrast to self-excited phenomena such as flutter, NSV stems from the convection of aerodynamic disturbances that synchronize with blade eigenmodes. Understanding this phenomenon is challenging, as its intricate interaction patterns and the occurrence of flow separations constrain the predictive capabilities of current state-of-the-art methods. To establish a comprehensive benchmark dataset on the aeroelastic behavior of modern ultra-high bypass ratio (UHBR) architectures, the European CleanSky-2 project CATANA aimed to examine a carbon composite fan stage, ECL5, utilizing multiphysical instrumentation. Recently, experiments on a structurally tuned reference configuration were conducted, revealing high-amplitude NSV at multiple subsonic speedlines. The observed interaction modes and instability onset differed significantly from numerical predictions using both linearized Reynolds-averaged Navier–Stokes and unsteady Reynolds-averaged Navier–Stokes with prescribed harmonic blade motion. In an effort to enhance the dataset, two additional fan configurations with identical blade profile geometries were investigated: one featured a structurally mistuned rotor with approximately doubled frequency variation of all eigenmodes compared to the reference, and the other involved a case with locally increased tip clearance on individual blades. This paper presents the experimental results of a sensitivity study and explores the influence of structural mistuning and tip clearance variation associated with manufacturing tolerances. Contrary to the intended outcome, it will be demonstrated that the mistuned case exhibited higher blade vibration amplitudes than the reference case during NSV. Detailed instrumentation reveals that the mistuning pattern was effectively transferred to the rotating system, but aerodynamic mistuning, particularly concerning tip clearance, emerged as a dominant factor. The non-synchronous forced-response nature of NSV during highly throttled operation ultimately dictates the observed response levels under different conditions, necessitating a thorough analysis to evaluate the robustness of a specific configuration. These results contribute valuable insights to the open dataset for the ECL5 configuration, benefiting the research community. Particularly noteworthy is the detailed capture of blade-to-blade variations in this research, which will prove instrumental in validating numerical methods.

References

1.
Bontemps
,
T.
,
Aubert
,
S.
, and
De Cacqueray
,
N.
,
2019
, “
Prediction of the Acoustic Influence of an Intake on Fan Flutter
,”
13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Lausanne, Switzerland, Apr. 8–12, pp.
1
12
.10.29008/ETC2019-044
2.
Goessling
,
J.
,
Seume
,
J. R.
,
Flueh
,
J. P.
,
Paletta
,
N.
,
Eggers
,
T.
,
Friedrichs
,
J.
, and
Natale
,
N.
,
2022
, “
Aerodynamic Damping of Composite UHBR Fans Under the Consideration of Acoustic Intake Reflections
,”
ASME
Paper No. GT2022-81777.10.1115/GT2022-81777
3.
Hill
,
G.
,
Gambel
,
J.
,
Schneider
,
S.
,
Peitsch
,
D.
, and
Stapelfeldt
,
S.
,
2022
, “
Aeroelastic Stability of Combined Plunge-Pitch Mode Shapes in a Linear Compressor Cascade
,”
Int. J. Turbomach., Propul. Power
,
7
(
1
), p.
7
.10.3390/ijtpp7010007
4.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Numerical Study on Aeroelastic Instability for a Low-Speed Fan
,”
ASME J. Turbomach.
,
139
(
7
), p.
071004
.10.1115/1.4035569
5.
Kielb
,
R. E.
,
Feiner
,
D. M.
,
Griffin
,
J. H.
, and
Miyakozawa
,
T.
,
2004
, “
Flutter of Mistuned Bladed Disks and Blisks With Aerodynamic and FMM Structural Coupling
,”
ASME
Paper No. GT2004-54315.10.1115/GT2004-54315
6.
Pinelli
,
L.
,
Arnone
,
A.
,
Peruzzi
,
L.
,
Bettini
,
C.
,
Finzel
,
C.
, and
Kellerer
,
R.
,
2023
, “
Mistuning Strategy on Long Blades to Mitigate Flutter
,”
ASME
Paper No. GT2023-102933.10.1115/GT2023-102933
7.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,”
ASME
Paper No. GT2003-38634.10.1115/GT2003-38634
8.
Franke
,
D.
,
Jüngst
,
M.
,
Möller
,
D.
,
Schiffer
,
H.-P.
, and
Giersch
,
T.
,
2020
, “
Influence of Pre-Swirl, Rotor Speed and Blade Count on Aeroelastic Coupling Mechanisms During Stall Inception of a Transonic Compressor
,”
ASME
Paper No. GT2020-15255.10.1115/GT2020-15255
9.
Jüngst
,
M.
,
Franke
,
D.
,
Schiffer
,
H.-P.
, and
Giersch
,
T.
,
2018
, “
Aeroelastic Effects in a Transonic Compressor With Nonaxisymmetric Tip Clearance
,”
Global Power and Propulsion Society Forum
, Montreal, QC, Canada, May 7–9, Vol.
18
, pp.
7
9
.https://www.researchgate.net/publication/351600831_Aeroelastic_Effects_in_a_Transonic_Compressor_with_Nonaxisymmetric_Tip_Clearance
10.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), pp.
51002
51010
.10.1115/1.4028557
11.
Zhao
,
F.
,
Dodds
,
J.
, and
Vahdati
,
M.
,
2021
, “
Influence of Blade Vibration on Part-Span Rotating Stall
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
12
(
2
), pp.
1
7
.10.38036/jgpp.12.2_1
12.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2020
, “
Non-Synchronous Vibration in Axial Compressors: Lock-in Mechanism and Semi-Analytical Model
,”
J. Sound Vib.
,
488
, p.
115649
.10.1016/j.jsv.2020.115649
13.
Fiquet
,
A.-L.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2024
, “
UHBR Open-Test-Case Fan ECL5/CATANA: Non-Linear Analysis of Non-Synchronous Blade Vibration at Part-Speed Conditions
,”
ASME J. Turbomach.
, 146(7), p. 071003.10.1115/1.4064841
14.
Hah
,
C.
,
2009
, “
Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37
,”
AIAA
Paper No. 2009-1061.10.2514/6.2009-1061
15.
Khaleghi
,
H.
,
Boroomand
,
M.
,
Tousi
,
A.
, and
Teixeira
,
J.
,
2008
, “
Stall Inception in a Transonic Axial Fan
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
2
), pp.
199
208
.10.1243/09576509JPE407
16.
Klausmann
,
F.
,
Franke
,
D.
,
Foret
,
J.
, and
Schiffer
,
H.-P.
,
2022
, “
Transonic Compressor Darmstadt - Open Test Case Introduction of the Tuda Open Test Case
,”
J. Global Power Propul. Soc.
,
6
, pp.
318
329
.10.33737/jgpps/156120
17.
Pages
,
V.
,
Duquesne
,
P.
,
Ottavy
,
X.
,
Ferrand
,
P.
,
Aubert
,
S.
,
Blanc
,
L.
, and
Brandstetter
,
C.
,
2021
, “
Uhbr Open-Test-Case Fan ECL5/Catana, Part 2: Mechanical and Aeroelastic Stability Analysis
,”
Proceedings of 14th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC2021-625
, Gdansk, Poland, Apr. 12–16, pp.
1
14
.10.29008/ETC2021-625
18.
Fiquet
,
A.-L.
,
Schneider
,
A. P.
,
Paoletti
,
B.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2024
, “
Experiments on Tuned UHBR Open-Test-Case Fan ECL5/Catana: Stability Limit
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051011
.10.1115/1.4063717
19.
Pages
,
V.
,
Duquesne
,
P.
,
Aubert
,
S.
,
Blanc
,
L.
,
Ferrand
,
P.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2022
, “
UHBR Open-Test-Case Fan ECL5/Catana
,”
Int. J. Turbomach., Propul. Power
,
7
(
2
), p.
17
.10.3390/ijtpp7020017
20.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2022
, “
Suppression of Nonsynchronous Vibration Through Intentional Aerodynamic and Structural Mistuning
,”
ASME J. Turbomach.
,
144
(
2
), p.
021008
.10.1115/1.4052233
21.
Brandstetter
,
C.
,
Pages
,
V.
,
Duquesne
,
P.
,
Paoletti
,
B.
,
Aubert
,
S.
, and
Ottavy
,
X.
,
2019
, “
Project Phare-2: A High-Speed UHBR Fan Test Facility for a New Open-Test Case
,”
ASME J. Turbomach.
,
141
(
10
), p.
101004
.10.1115/1.4043883
22.
Schneider
,
A. P.
,
Paoletti
,
B.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2022
, “
Influence of a Turbulence Control Screen on the Aerodynamic and Aeroelastic Behavior of a UHBR Fan
,”
ASME
Paper No. GT2022-81961.10.1115/GT2022-81961
23.
Zielinski
,
M.
, and
Ziller
,
G.
,
2000
, “
Noncontact Vibration Measurements on Compressor Rotor Blades
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
847
856
.10.1088/0957-0233/11/7/301
24.
Schneider
,
A. P.
,
Paoletti
,
B.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2023
, “
Experimental Monitoring of Vibrations and the Problem of Amplitude Quantification
,”
J. Phys.: Conf. Ser.
,
2511
(
1
), p.
012017
.10.1088/1742-6596/2511/1/012017
25.
Brandstetter
,
C.
,
Juengst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.10.1115/1.4039053
26.
Schneider
,
A. P.
,
2024
, “
Aerodynamic and Aeroelastic Investigation of a Composite Fan for Ultra-High-Bypass-Ratio Aircraft Engines
,”
Ph.D. thesis
,
Ecole de Centrale de Lyon
,
Écully, France
.https://theses.hal.science/tel-04685881v1
27.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.10.1115/1.1370160
28.
Pullan
,
G.
,
Young
,
A.
,
Day
,
I.
,
Greitzer
,
E.
, and
Spakovszky
,
Z.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), pp.
51007
51011
.10.1115/1.4028494
29.
Tharreau
,
P.
,
Hardy-Falch
,
M.
,
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2024
, “
Non-Synchronous Vibration: Characterisation of the Aerodynamic Disturbance and Its Dependency on Local Tip Clearance
,”
ASME
Paper No. GT2024-129186.10.1115/GT2024-129186
30.
Brandstetter
,
C.
,
Ottavy
,
X.
,
Paoletti
,
B.
, and
Stapelfeldt
,
S.
,
2021
, “
Interpretation of Stall Precursor Signatures
,”
ASME J. Turbomach.
,
143
(
12
), p.
121011
.10.1115/1.4051709
31.
Brandstetter
,
C.
, and
Stapelfeldt
,
S.
,
2021
, “
Analysis of a Linear Model for Non-Synchronous Vibrations Near Stall
,”
Int. J. Turbomach., Propul. Power
,
6
(
3
), p.
26
.10.3390/ijtpp6030026
You do not currently have access to this content.