Abstract

A wave reformer utilizes shock-wave heating resulting from pressure exchange between a driver and a driven (reactant gas) to initiate a thermal decomposition reaction. Although widely applicable to many reactions, this paper will focus on the thermal pyrolysis of methane to produce hydrogen and solid (black) carbon. It uses wave rotor technology that has been applied to other applications but developed specifically here for high-temperature pyrolysis by New Wave Hydrogen, Inc. (NWH). This research uses a quasi-two-dimensional (Q2D) model implemented in ansysfluent to study the influence of new channel design features on the unsteady flow field and performance characteristics of the wave reformer. The primary objective of the work is to investigate the impact of variable area channel design on peak temperature (a proxy for thermal pyrolysis), which has received limited attention in existing literature. The model numerically solves the three-dimensional (3D), compressible, and unsteady Navier–Stokes equations, employing the k–ω SST turbulence model for closure. Additionally, it utilizes a cell-centered approach coupled to multispecies transport equations and a one-step finite-rate chemistry model. The channel's curvature is controlled with sigmoid functions to ensure a smooth area transition along the channel. The Q2D results reveal that as the fluid traverses the converging channel, its temperature increases due to the rising internal energy, necessary for enhancing hydrogen yields. However, an over-reduction in channel cross section results in a decrease in the driven mass flow rate, subsequently lowering the mass flow ratio. This work shows that, above a given threshold, there is a significant benefit to implementing converging channel designs in wave reformers for enhanced shock heating.

References

1.
Akbari
,
P.
,
Copeland
,
C. D.
,
Tüchler
,
S.
,
Davidson
,
M.
, and
Mahmoodi-Jezeh
,
S. V.
,
2021
, “
Shock Wave Heating: A Novel Method for Low-Cost Hydrogen Production
,”
ASME
Paper No. IMECE2021-69775.10.1115/IMECE2021-69775
2.
Burghard
,
H.
,
1929
, German Patent No. 485,386.
3.
Larosiliere
,
L.
,
1993
, “
Three-Dimensional Numerical Simulation of Gradual Opening in a Wave Rotor Passage
,”
AIAA
Paper No. 93-2526.10.2514/6.93-2526
4.
Chan
,
S.
,
Yao
,
L.
,
Fu
,
Q.
,
Chen
,
Y.
, and
Liu
,
H.
,
2023
, “
Wave Rotor as a Pressure Exchanger for Lower Rotational Speed and Lower Shaft Work in a Supercritical Carbon Dioxide Brayton Cycle
,”
Energy Convers. Manage.
,
277
, p.
116578
.10.1016/j.enconman.2022.116578
5.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2021
, “
Parametric Numerical Study on the Performance Characteristics of a Micro-Wave Rotor Gas Turbine
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
12
(
1
), pp.
10
24
.10.38036/jgpp.12.1_10
6.
Chan
,
S.
, and
Liu
,
H.
,
2014
, “
Experimentally Modified Unsteady Shock Wave Model for Wave Rotor Design
,”
AIAA
Paper No. 2014-3730.10.2514/6.2014-3730
7.
Chan
,
S.
,
Liu
,
H.
,
Xing
,
F.
, and
Song
,
H.
,
2018
, “
Wave Rotor Design Method With Three Steps Including Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111201
.10.1115/1.4038815
8.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
,
2005
, “
Preliminary Study of a Novel R718 Compression Refrigeration Cycle Using a Three-Port Condensing Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
539
544
.10.1115/1.1850503
9.
Hu
,
D.
,
Yu
,
Y.
,
Liu
,
P.
,
Wu
,
X.
, and
Zhao
,
Y.
,
2019
, “
Improving Refrigeration Performance by Using Pressure Exchange Characteristic of Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022004
.10.1115/1.4041722
10.
Nalim
,
M. R.
,
2000
, “
Longitudinally Stratified Combustion in Wave Rotors
,”
J. Propul. Power
,
16
(
6
), pp.
1060
1068
.10.2514/2.5676
11.
Nalim
,
M. R.
,
Snyder
,
P. H.
, and
Kowalkowski
,
M.
,
2017
, “
Experimental Test, Model Validation, and Viability Assessment of a Wave-Rotor Constant-Volume Combustor
,”
J. Propul. Power
,
33
(
1
), pp.
163
175
.10.2514/1.B36174
12.
Akbari
,
P.
, and
Polanka
,
M. D.
,
2018
, “
Performance of an Ultra-Compact Disk-Shaped Reheat Gas Turbine for Power Generation
,”
AIAA
Paper No. 2018-4878.10.2514/6.2018-4878
13.
Lauer
,
J. L.
,
Berchtold
,
M.
, and
Shang
,
J. Y.
,
1967
, “
Continuous Shock Wave Reactor for Chemical Production and Reaction Studies
,”
Chem. Eng. Sci.
,
22
(
2
), pp.
209
215
.10.1016/0009-2509(67)80013-7
14.
Madiot
,
G.
,
Mahmoodi-Jezeh
,
S. V.
,
Tüchler
,
S.
,
Davidson
,
M.
,
Akbari
,
P.
, and
Copeland
,
C. D.
,
2022
, “
Quasi-Two-Dimensional Numerical Model for Shock Wave Reformers
,”
ASME
Paper No. GT2022-80865.10.1115/GT2022-80865
15.
Mahmoodi-Jezeh
,
S. V.
,
Tüchler
,
S.
,
Madiot
,
G.
,
Davidson
,
M.
,
Akbari
,
P.
, and
Copeland
,
C. D.
,
2022
, “
Numerical Study of Methane Pyrolysis Inside a Single-Channel Shock Wave Reformer
,”
ASME
Paper No. GT2022-82683.10.1115/GT2022-82683
16.
Bird
,
G. A.
,
1959
, “
The Effect of Wall Shape on the Degree of Reinforcement of a Shock Wave Moving Into a Converging Channel
,”
J. Fluid Mech.
,
5
(
1
), pp.
60
66
.10.1017/S0022112059000052
17.
Russell
,
D. A.
,
1967
, “
Shock-Wave Strengthening by Area Convergence
,”
J. Fluid Mech.
,
27
(
2
), pp.
305
314
.10.1017/S0022112067000333
18.
Dowse
,
J.
, and
Skews
,
B.
,
2014
, “
Area Change Effects on Shock Wave Propagation
,”
Shock Waves
,
24
(
4
), pp.
365
373
.10.1007/s00193-014-0501-z
19.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2021
, “
Numerical Optimisation of a Micro-Wave Rotor Turbine Using a Quasi-Two-Dimensional CFD Model and a Hybrid Algorithm
,”
Shock Waves
,
31
(
3
), pp.
271
300
.10.1007/s00193-020-00979-4
20.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2020
, “
Experimental and Numerical Assessment of an Optimised, Non-Axial Wave Rotor Turbine
,”
Appl. Energy
,
268
, p.
115013
.10.1016/j.apenergy.2020.115013
21.
Tüchler
,
S.
, and
Copeland
,
C.
,
2019
, “
Experimental Results From the Bath μ-Wave Rotor Turbine Performance Tests
,”
Energy Convers. Manage.
,
189
, pp.
33
48
.10.1016/j.enconman.2019.03.079
22.
Tüchler
,
S.
, and
Copeland
,
C.
,
2019
, “
Validation of a Numerical Quasi One-Dimensional Model for Wave Rotor Turbines With Curved Channels
,”
ASME J. Eng. Gas Turbines Power
, 142(2), p. 021017.10.1115/1.4044286
23.
Wang
,
H.
,
Liu
,
X.
,
Fu
,
Z.
,
Hu
,
D.
, and
Liu
,
P.
,
2023
, “
Numerical and Experimental Study on the Refrigeration Performance of a Variable-Section Gas Wave Oscillation Tube
,”
Sci. China Technol. Sci.
,
66
(
2
), pp.
489
500
.10.1007/s11431-022-2180-7
You do not currently have access to this content.