Abstract

In this paper, an additively manufactured (AM) Inconel catalytic combustor was tested in combination with a microwave rotor turbine with nonaxial channels designed for shaft power extraction. This was done in an open-loop configuration over a range of operating conditions in order to characterize the behavior of the wave rotor and combustor separately. The catalytic combustor data yielded low pressure losses of approximately 1% and provided stable and continuous operation up to outlet temperatures of 900 °C and combustion efficiencies of up to 99%. The data also revealed a high sensitivity to local over-fueling and hotspots that severely reduced service life. This is attributed to the additive manufacturing process producing uneven fuel injector hole sizes that cause uneven fuel mixing upstream of the catalytic reactor. However, it showed that first, it is possible to manufacture and coat an additively manufactured catalytic core. Second, it showed that the design freedom of AM could be used to make catalytic combustors viable in commercial applications.

References

1.
Cosworth
, 2021, “Cat-Gen Case Study - Filling the Void,” Cosworth, Northampton, UK, accessed Nov. 6, 2024, https://www.cosworth.com/news/cat-gen-filling-the-void/
2.
Adamou
,
A.
,
Kennedy
,
I.
,
Farmer
,
B.
,
Hussein
,
A.
, and
Copeland
,
C.
,
2019
, “
Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine
,”
ASME
Paper No. GT2019-90245.10.1115/GT2019-90245
3.
Pure World Energy
,
2024
, “
C30 Capstone Microturbine
,” Pure World Energy, Berkshire, UK, accessed Nov. 6, 2024, https://www.pureworldenergy.com/technology/capstone-products/c30-capstone-microturbine/
4.
Visser
,
W. P.
,
Shakariyants
,
S. A.
, and
Oostveen
,
M.
,
2011
, “
Development of a 3 kW Microturbine for CHP Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
042301
.10.1115/1.4002156
5.
UAV Turbines Inc
.,
2020
, “
UAV Turbines
,” UAV Turbines Inc., Miami, FL, accessed Nov. 6, 2024, https://www.uavturbines.com/
6.
Tuttle
,
K.
, and
Vick
,
M.
,
2017
, “
Preliminary Design, Ignition, and Fuel Injection for a High Temperature Recuperated Microturbine Combustor
,”
ASME
Paper No. GT2017-63165.10.1115/GT2017-63165
7.
Vick
,
M.
,
Young
,
T.
,
Kelly
,
M.
,
Tuttle
,
S.
, and
Hinnant
,
K.
,
2016
, “
A Simple Recuperated Ceramic Microturbine: Design Concept, Cycle Analysis, and Recuperator Component Prototype Tests
,”
ASME
Paper No. GT2016-57780.10.1115/GT2016-57780
8.
Van den Braembussche
,
R. A.
,
2012
,
Micro Gas Turbines - A Short Survey of Design Problems
,
RTO, Educational Notes RTO-EN-AVT-131
,
Neuilly-sur-Seine, France
.
9.
Adamou
,
A.
,
Costall
,
A.
,
Turner
,
J. W. G.
,
Jones
,
A.
, and
Copeland
,
C.
,
2023
, “
Experimental Performance and Emissions of Additively Manufactured High-Temperature Combustion Chambers for Micro-Gas Turbines
,”
Int. J. Engine Res.
,
24
(
4
), pp.
1273
1289
.10.1177/14680874221082636
10.
Adamou
,
A.
,
Turner
,
J.
,
Costall
,
A.
,
Jones
,
A.
, and
Copeland
,
C.
,
2021
, “
Design, Simulation, and Validation of Additively Manufactured High-Temperature Combustion Chambers for Micro Gas Turbines
,”
Energy Convers. Manage.
,
248
, p.
114805
.10.1016/j.enconman.2021.114805
11.
Adamou
,
A.
, and
Copeland
,
C.
,
2021
, “
Experimental and Computational Analysis of Additive Manufactured Augmented Backside Liner Cooling Surfaces for Use in Micro-Gas Turbines
,”
ASME J. Turbomach.
,
143
(
7
), p.
071012
.10.1115/1.4050363
12.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2021
, “
Numerical Optimisation of a Micro-Wave Rotor Turbine Using a Quasi-Two-Dimensional CFD Model and a Hybrid Algorithm
,”
Shock Waves
,
31
(
3
), pp.
271
300
.10.1007/s00193-020-00979-4
13.
T¨uchler
,
S.
, and
Copeland
,
C. D.
,
2021
, “
Parametric Numerical Study on the Performance Characteristics of a Micro-Wave Rotor Gas Turbine
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
12
(
1
), pp.
10
24
.10.38036/jgpp.12.1_10
14.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2020
, “
Experimental and Numerical Assessment of an Optimised, Non-Axial Wave Rotor Turbine
,”
Appl. Energy
,
268
, p.
115013
.10.1016/j.apenergy.2020.115013
15.
Tüchler
,
S.
, and
Copeland
,
C.
,
2019
, “
Experimental Results From the Bath μ-Wave Rotor Turbine Performance Tests
,”
Energy Convers. Manage.
,
189
, pp.
33
48
.10.1016/j.enconman.2019.03.079
16.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2020
, “
Validation of a Numerical Quasi One-Dimensional Model for Wave Rotor Turbines With Curved Channels
,”
ASME J. Eng. Gas Turbines Power
, 142(2), p.
021017
.10.1115/1.4044286
17.
Weber
,
H. E.
,
1996
,
Shock Wave Engine Design
,
Wiley
,
New York
.
18.
Pearson
,
R. D.
,
1985
, “
A Gas Wave-Turbine Engine Which Developed 35 HP and Performed Over a 6:1 Speed Range
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
,
Naval Postgraduate School
, Monterey, CA, May, pp.
125
170
.
19.
Pearson
,
R. D.
,
1986
, “
Pressure Exchangers and Pressure Exchange Engines
,”
The Thermodynamics and Gas Dynamics of Internal-Combustion Engines
, Vol. II,
J. H.
Horlock
, and
D. E.
Winterbone
, eds.,
Oxford University Press
,
New York
, pp.
903
943
, Chap. XV1.
20.
Piechna
,
J.
,
2006
, “
Feasibility Study of the Wave Disk Micro-Engine Operation
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
S270
S281
.10.1088/0960-1317/16/9/S15
21.
Piechna
,
J.
, and
Dyntar
,
D.
,
2008
, “
Numerical Investigation of the Wave Disk Micro-Engine Concept
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
2
(
1
), pp.
1
8
.10.38036/jgpp.2.1_1
22.
Piechna
,
J.
, and
Dyntar
,
D.
,
2010
, “
Hybrid Wave Engine Concept and Numerical Simulation of Engine Operation
,”
Arch. Mech. Eng.
,
57
(
1
), pp.
69
95
.10.2478/v10180-010-0004-0
23.
Saint-Just
,
J.
, and
Etemad
,
S.
,
2016
, “
Catalytic Combustion of Hydrogen for Heat Production
,”
Compend. Hydrogen Energy
,
3
, pp.
263
287
.10.1016/B978-1-78242-363-8.00010-4
24.
Nguyen
,
V. N.
,
Deja
,
R.
,
Peters
,
R.
,
Blum
,
L.
, and
Stolten
,
D.
,
2018
, “
Study of the Catalytic Combustion of Lean hydrogen-Air Mixtures in a Monolith Reactor
,”
Int. J. Hydrogen Energy
,
43
(
36
), pp.
17520
17530
.10.1016/j.ijhydene.2018.07.126
25.
Lefebvre
,
A.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion - Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
26.
Sathish Sharma
,
G.
,
Sugavaneswaran
,
M.
, and
Prakash
,
R.
,
2022
, “
Design and Validation of Additive Manufactured Catalytic Converter for the Control of Regulated and Unregulated Emissions of a Gasohol Fuelled Spark Ignition Engine
,”
Fuel
,
309
, p.
122146
.10.1016/j.fuel.2021.122146
27.
Papetti
,
V.
,
Eggenschwiler
,
P. D.
,
Della Torre
,
A.
,
Montenegro
,
G.
,
Onorati
,
A.
,
Ortona
,
A.
, and
Koltsakis
,
G.
,
2021
, “
Instationary Heat and Mass Transfer Phenomena in Additive Manufactured Open Cell Polyhedral Structures for Automotive Catalysis
,”
Chem. Eng. Sci.
,
234
, p.
116448
.10.1016/j.ces.2021.116448
28.
Kovacev
,
N.
,
Doustdar
,
O.
,
Li
,
S.
,
Tsolakis
,
A.
,
Herreros
,
J.
, and
Essa
,
K.
,
2023
, “
The Synergy Between Substrate Architecture of 3D-Printed Catalytic Converters and Hydrogen for Low-Temperature Aftertreatment Systems
,”
Chem. Eng. Sci.
,
269
, p.
118490
.10.1016/j.ces.2023.118490
29.
Santoliquido
,
O.
,
Bianchi
,
G.
,
Eggenschwiler
,
P. D.
, and
Ortona
,
A.
,
2017
, “
Additive Manufacturing of Periodic Ceramic Substrates for Automotive Catalyst Supports
,”
Int. J. Appl. Ceram. Technol.
,
14
(
6
), pp.
1164
1173
.10.1111/ijac.12745
30.
Standard BS ISO 5168:2005
,
2005
,
Measurement of Fluid Flow - Procedures for the Evaluation of Uncertainties
,
International Organization for Standardization, ISO Central Secretary
,
London, UK
.
You do not currently have access to this content.