Abstract

The safety of integrally bladed rotors is often assessed through bench-level vibration tests to measure amplification factors and back-out sector frequency deviations via mistuning identification (ID) algorithms. This process is usually composed of two separate steps. First, a system ID step is completed to identify system modal data. Then, these data are input into mistuning ID algorithms. Errors in identified modal data will then propagate to produce errors in the system's predicted mistuning. Obtaining robust mistuning estimates then requires larger quantities of accurate modal data. This effort seeks to attain accurate mistuning data by coupling the system and mistuning ID steps into a more parallel, versus serial, process that is capable of identifying many system modes. An iterative polyreference-least squares complex frequency-domain (P-LSCF) algorithm finds modal data, and a mistuning ID algorithm obtains mistuning data at each iteration. An outlier detection method is proposed to remove spurious modes that cause erroneous mistuning results. Then, a weighted, least-squares regression approach is employed to remove the impact of sector-specific outlier data. This method reduces errors in identified mistuning parameters from the fundamental mistuning model ID algorithm. Furthermore, the approaches eliminate the need for users to determine true versus spurious system modes in each iteration of the P-LSCF algorithm, thus removing ambiguity. The developed approaches are tested on simulated and bench-top test data. Results show the efficacy of the developed approaches and their ability to account for uncertainty in mistuning parameters.

References

1.
Jones
,
K. W.
, and
Cross
,
C. J.
,
2003
, “
Traveling Wave Excitation System for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.10.2514/2.6089
2.
Berruti
,
T.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2010
, “
A Test Rig for Non-Contact Travelling Wave Excitation of a Bladed Disk With Underplatform Dampers
,”
ASME
Paper No. GT2010-22879.10.1115/GT2010-22879
3.
Beck
,
J. A.
,
Justice
,
J. A.
,
Scott-Emuakpor
,
O. E.
,
George
,
T. J.
, and
Brown
,
J. M.
,
2015
, “
Next Generation Traveling-Wave Excitation System for Integrally Bladed Rotors
,”
J. Aerosp. Eng.
,
28
(
6
), p.
04015005
.10.1061/(ASCE)AS.1943-5525.0000493
4.
Holland
,
D. E.
,
Castanier
,
M. P.
,
Ceccio
,
S. L.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2010
, “
Testing and Calibration Procedures for Mistuning Identification and Traveling Wave Excitation of Blisks
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042502
.10.1115/1.3204656
5.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via As-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
6.
Grant
,
J. J.
,
Cosmo
,
M. R.
,
Hou
,
J. F.
,
Smith
,
E. O.
, and
de Baar
,
J. H. S.
,
2018
, “
An Acoustic Travelling Wave System for the Analysis of Blisk Mistuning
,”
ASME
Paper No. GT2018-75666.10.1115/GT2018-75666
7.
Carassale
,
L.
, and
Rizzetto
,
E.
,
2021
, “
Experimental Investigation on a Bladed Disk With Traveling Wave Excitation
,”
Sensors
,
21
(
12
), p.
3966
.10.3390/s21123966
8.
Lupini
,
A.
,
Shim
,
J.
,
Callan
,
S.
, and
Epureanu
,
B. I.
,
2021
, “
Mistuning Identification Technique Based on Blisk Detuning
,”
AIAA J.
,
59
(
8
), pp.
1
9
.10.2514/1.J060209
9.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
10.
Beirow
,
B.
,
Kühhorn
,
A.
, and
Nipkau
,
J.
,
2009
, “
On the Influence of Strain Gauge Instrumentation on Blade Vibrations of Integral Blisk Compressor Rotors Applying a Discrete Model
,”
ASME
Paper No. GT2009-59207.10.1115/GT2009-59207
11.
Hönisch
,
P.
,
Kühhorn
,
A.
, and
Beirow
,
B.
,
2011
, “
Experimental and Numerical Analyses of radial turbine Blisks With Regard to Mistuning
,”
ASME
Paper No. GT2011-45359.10.1115/GT2011-45359
12.
Zhao
,
X.
,
Li
,
H.
,
Yang
,
S.
,
Fan
,
Z.
,
Dong
,
J.
, and
Cao
,
H.
,
2021
, “
Blade Vibration Measurement and Numerical Analysis of a Mistuned Industrial Impeller in a Single-Stage Centrifugal Compressor
,”
J. Sound Vib.
,
501
, p.
116068
.10.1016/j.jsv.2021.116068
13.
DiMaggio
,
S. J.
,
Duron
,
Z. H.
, and
Davis
,
G.
,
2003
, “
Approximate Modal Identification of Lightly Damped, Highly Symmetric Bladed Disks
,”
AIAA J.
,
41
(
6
), pp.
1105
1112
.10.2514/2.2051
14.
Figaschewsky
,
F.
, and
Kühhorn
,
A.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. PART 1: Theory and Benchmark Under Rotating Conditions
,”
Proceedings of the 15th International Symposium on Unsteady Aero-Dynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT15
, ISUAAAT, Oxford, UK, Sept. 24–27, pp.
15
48
.https://www-docs.b-tu.de/fg-strukturmechanik/public/ISUAAAT15-048-Figaschewsky_Kuehhorn-SystemID_Part1.pdf
15.
Beirow
,
B.
, and
Figaschewsky
,
F.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies, and Mistuning. PART 2: Application to Blisks at Rest
,”
Proceedings of the 15th International Symposium on Unsteady Aero-Dynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT15
, ISUAAAT 15-021, Oxford, UK, Sept. 24–27.https://www-docs.b-tu.de/fg-strukturmechanik/public/ISUAAAT15-021-Beirow_Kuehhorn_Figaschewsky-SystemID_Part2.pdf
16.
Nyssen
,
F.
, and
Golinval
,
J.-C.
,
2016
, “
Identification of Mistuning and Model Updating of an Academic Blisk Based on Geometry and Vibration Measurements
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
252
264
.10.1016/j.ymssp.2015.08.006
17.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2008
, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.10.2514/1.37314
18.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2011
, “
Mistuning Identification of Blisks at Higher Frequencies
,”
AIAA J.
,
49
(
6
), pp.
1299
1302
.10.2514/1.J050427
19.
Beck
,
J. A.
,
Brown
,
J. M.
,
Gillaugh
,
D. L.
, and
Kaszynski
,
A. A.
,
2023
, “
Modal Identification for Integrally Bladed Rotors Under Traveling Wave Excitation
,”
ASME J. Eng. Gas Turbines Power
,
145
(
6
), p.
061010
.10.1115/1.4056538
20.
Beck
,
J. A.
,
Brown
,
J. M.
, and
Gillaugh
,
D. L.
,
2024
, “
Integrally Bladed Rotor Modal Identification Under Traveling Wave Excitation With High Density Measurement Points
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081013
.10.1115/1.4064192
21.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model–Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
22.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model–Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
23.
Lim
,
S.-H.
,
2005
, “
Dynamic Analysis and Design Strategies for Mistuned Bladed Disks
,”
Ph.D. thesis
,
University of Michigan
,
Ann Arbor, MI
.https://hdl.handle.net/2027.42/124866
24.
Judge
,
J. A.
,
Pierre
,
C.
, and
Ceccio
,
S. L.
,
2009
, “
Experimental Mistuning Identification in Bladed Disks Using a Component-Mode-Based Reduced-Order Model
,”
AIAA J.
,
47
(
5
), pp.
1277
1287
.10.2514/1.41214
25.
Beck
,
J.
,
Brown
,
J.
,
Gillaugh
,
D.
,
Carper
,
E.
, and
Kaszynski
,
A.
,
2021
, “
Integrally Bladed Rotor Mistuning Identification and Model Updating Using Geometric Mistuning Models
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121012
.10.1115/1.4051111
26.
Reynders
,
E.
,
Houbrechts
,
J.
, and
De Roeck
,
G.
,
2012
, “
Fully Automated (Operational) Modal Analysis
,”
Mech. Syst. Signal Process.
,
29
, pp.
228
250
.10.1016/j.ymssp.2012.01.007
27.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J.-J.
,
Lombard
,
J.-P.
, and
Baumhauer
,
S.
,
2007
, “
Mistuning Identification and Model Updating of an Industrial Blisk
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
10
.10.1155/2007/17289
28.
Denis
,
S.
,
Hoffait
,
S.
,
Ligot
,
J.
,
de Cazenove
,
J.
, and
Salles
,
L.
,
2023
, “
Improvement and Validation of an Autonomous Experimental System to Identify BLISK Mistuning
,”
ASME
Paper No. GT2023-102903
.10.1115/GT2023-102903
29.
Seeger
,
B.
,
Kohlmann
,
L.
,
Schoenenborn
,
H.
,
Schwarz
,
S.
, and
Krack
,
M.
,
2022
, “
Identification of Mistuning Based on Forced Response Measurements and Assessment for a Real Compressor Blisk
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091006
.10.1115/1.4055019
30.
Rahmani
,
M.
, and
Atia
,
G. K.
,
2017
, “
Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
,”
IEEE Trans. Signal Process.
,
65
(
23
), pp.
6260
6275
.10.1109/TSP.2017.2749215
31.
Peeters
,
B.
,
Van der Auweraer
,
H.
,
Guillaume
,
P.
, and
Leuridan
,
J.
,
2004
, “
The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation?
,”
Shock Vib.
,
11
(
3–4
), pp.
395
409
.10.1155/2004/523692
32.
Guillaume
,
P.
,
Verboven
,
P.
,
Vanlanduit
,
S.
,
der Auweraer
,
H. V.
, and
Peeters
,
B.
,
2003
, “
A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator
,”
Proceedings of 21st International Modal Analysis Conference
,
Kissimmee, FL
, Feb. 3–6, Vol.
21
, pp.
1762
1770
.https://www.researchgate.net/publication/265423092_A_poly-reference_implementation_of_the_least-squares_complex_frequency-domain_estimator
33.
Peeters
,
B.
, and
Van der Auweraer
,
H.
,
2005
, “
PolyMAX: A Revolution in Operational Modal Analysis
,”
Proceedings of the 1st International Operational Modal Analysis Conference
, Copenhagen, Denmark, Apr. 26–27, p.
106926
.https://www.researchgate.net/publication/268048253_PolyMax_a_revolution_in_operational_modal_analysis
34.
Van der Auweraer
,
H.
, and
Peeters
,
B.
,
2004
, “
Discriminating Physical Poles From Mathematical Poles in High Order Systems: Use and Automation of the Stabilization Diagram
,”
Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 04CH37510)
, Como, Italy, May 18–20, Vol.
3
, pp.
2193
2198
.10.1109/IMTC.2004.1351525
35.
Cook
,
R. D.
,
1977
, “
Detection of Influential Observation in Linear Regression
,”
Technometrics
,
19
(
1
), pp.
15
18
.10.1080/00401706.1977.10489493
36.
Cook
,
R. D.
,
1979
, “
Influential Observations in Linear Regression
,”
J. Am. Stat. Assoc.
,
74
(
365
), pp.
169
174
.10.1080/01621459.1979.10481634
37.
Xu
,
H.
,
Caramanis
,
C.
, and
Mannor
,
S.
,
2013
, “
Outlier-Robust PCA: The High-Dimensional Case
,”
IEEE Trans. Inf. Theory
,
59
(
1
), pp.
546
572
.10.1109/TIT.2012.2212415
38.
Rosner
,
B.
,
1983
, “
Percentage Points for a Generalized ESD Many-Outlier Procedure
,”
Technometrics
,
25
(
2
), pp.
165
172
.10.1080/00401706.1983.10487848
39.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2000
,
Random Data: Analysis and Measurement Procedures
, 3rd ed.,
Wiley, Inc
., Hoboken, NJ.
You do not currently have access to this content.