Abstract

Experimental methods are necessary to quantify structural damping. Among these methods, modal testing of bladed disks is of particular interest because it provides an efficient experimental characterization of these structures, which are critical parts of aeronautic turbojet engines. This work presents techniques to determine the optimal order of subspace state-space identification methods for modal parameter estimation of a realistic fan stage. Indeed, the order of the identification model is unknown during modal analysis requiring techniques to determine which model order should be used for parameter estimation. To investigate these techniques, several methods to estimate the optimal model order are reviewed. A specific focus is proposed on the determination of model order through statistical tests as these techniques have the benefits of providing indicators along with a threshold built over hypothesis testing and a probability of rejection. In order to further analyze model order determination techniques, some of these techniques are evaluated by means of a numerical model of a realistic fan stage, hence making possible to assess the performances of estimation methods close to experimental conditions. In particular, estimation in a context of high modal density as well as model order determination through “M-test” are addressed using this model. After assessing the implemented estimation method over the numerical model, this method is applied over experimental data obtained by performing modal tests over a full-scale composite rotating fan in vacuum condition.

References

1.
Ljung
,
L.
,
1998
,
System Identification
,
Prentice Hall PTR
, Upper Saddle River, NJ.
2.
Katayama
,
T.
,
2005
,
Subspace Methods for System Identification
,
Springer
, London, UK.
3.
Overschee
,
P.
,
1996
,
Subspace Identification for Linear Systems Theory - Implementation - Applications
,
Springer US
, New York.
4.
Jorajuria
,
C.
,
Esteves
,
C.
,
Gibert
,
C.
, and
Thouverez
,
F.
,
2024
, “
Comparison of Subspace Identification Methods For Modal Estimation of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051006
.10.1115/1.4063634
5.
Larimore
,
W. E.
,
1996
, “
Statistical Optimality and Canonical Variate Analysis System Identification
,”
Signal Process.
,
52
(
2
), pp.
131
144
.10.1016/0165-1684(96)00049-7
6.
Kailath
,
T.
,
1980
,
Linear Systems
,
Prentice Hall
, Englewood Cliffs, NJ.
7.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1994
, “
N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems
,”
Automatica
,
30
(
1
), pp.
75
93
.10.1016/0005-1098(94)90230-5
8.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1995
, “
Choice of State-Space Basis in Combined Deterministic-Stochastic Subspace Identification
,”
Automatica
,
31
(
12
), pp.
1877
1883
.10.1016/0005-1098(95)00071-9
9.
Verhaegen
,
M.
,
1994
, “
Identification of the Deterministic Part of MIMO State Space Models Given in Innovations Form From Input-Output Data
,”
Automatica
,
30
(
1
), pp.
61
74
.10.1016/0005-1098(94)90229-1
10.
Larimore
,
W. E.
,
1990
, “
Canonical Variate Analysis in Identification, Filtering, and Adaptive Control
,”
29th IEEE Conference on Decision and Control,
Honolulu, HI, Dec. 5–7.10.1109/CDC.1990.203665
11.
Akaike
,
H.
,
1970
, “
Statistical Predictor Identification
,”
Ann. Inst. Stat. Math.
,
22
(
1
), pp.
203
217
.10.1007/BF02506337
12.
Guillaume
,
P.
,
Verboven
,
P.
,
Vanlanduit
,
S.
,
Van Der Auweraer
,
H.
, and
Peeters
,
B.
,
2003
, “
A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator
,”
Proc. IMAC
,
21
, pp.
183
192
.https://www.researchgate.net/publication/265423092_A_poly-reference_implementation_of_the_least-squares_complex_frequency-domain_estimator
13.
Akaike
,
H.
,
1973
, “
Information Theory as an Extension of the Maximum Likelihood Principle
,”
Second International Symposium on Information Theory
, Tsahkadsor, Armenia, USSR, Sept. 2–8,
Akademiai Kiado
,
Budapest
, Hungary, pp.
276
281
.https://gwern.net/doc/statistics/decision/1998-akaike.pdf
14.
Sugiura
,
N.
,
1978
, “
Further Analysis of the Data by Akaike's Information Criterion and the Finite Corrections
,”
Commun. Stat. - Theory Methods
,
7
(
1
), pp.
13
26
.10.1080/03610927808827599
15.
Rissanen
,
J.
,
1978
, “
Modeling by Shortest Data Description
,”
Automatica
,
14
(
5
), pp.
465
471
.10.1016/0005-1098(78)90005-5
16.
Schwarz
,
G.
,
1978
, “
Estimating the Dimension of a Model
,”
Ann. Stat.
,
6
(
2
), pp.
461
464
.https://www.jstor.org/stable/2958889
17.
Snedecor
,
G. W.
, and
Cochran
,
W. G.
,
1996
,
Statistical Methods
, 8th ed., Iowa State University Press, Ames, IA.
18.
Aoki
,
M.
, and
Havenner
,
A.
,
1989
, “
A Method for Approximate Representation of Vector-Valued Time Series and Its Relation to Two Alternatives
,”
J. Econometrics
,
42
(
2
), pp.
181
199
.10.1016/0304-4076(89)90002-X
19.
Dorfman
,
J. H.
, and
Havenner
,
A.
,
1995
, “
Model Specification Tests for Balanced Representation State Space Models
,”
Commun. Stat. - Theory Methods
,
24
(
1
), pp.
97
119
.10.1080/03610929508831477
20.
Dorfman
,
J. H.
, and
Havenner
,
A. M.
,
1992
, “
A Bayesian Approach to State Space Multivariate Time Series Modeling
,”
J. Econom.
,
52
(
3
), pp.
315
346
.10.1016/0304-4076(92)90015-J
21.
Jorajuria
,
C.
,
Gibert
,
C.
,
Thouverez
,
F.
, and
Esteves
,
C.
,
2022
, “
Experimental Modal Analysis of a Full-Scale Rotating Fan
,”
ASME
Paper No. GT2022-82540.10.1115/GT2022-82540
22.
Shampine
,
L. F.
,
1986
, “
Some Practical Runge-Kutta Formulas
,”
Math. Comput.
,
46
(
173
), pp.
135
150
.10.1090/S0025-5718-1986-0815836-3
23.
Mabilia
,
A.
,
Gibert
,
C.
,
Thouverez
,
F.
,
De Jaeghere
,
E.
,
Sanchez
,
L.
, and
Giovannoni
,
L.
,
2019
, “
Modal Testing of a Full-Scale Rotating Woven Composite Fan Using Piezoelectric Excitation
,” K. Cavalca and H. Weber, eds.,
Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, Mechanisms and Machine Science
,
Springer
, Cham, Vol.
62
.10.1007/978-3-319-99270-9_21
You do not currently have access to this content.