Abstract

This paper focused on designing a thermal management system (TMS) for a parallel hybrid electric (PHE) XV-15 tiltrotor aircraft used in urban air mobility (UAM) applications. The TMS is integrated into the aircraft system to assess its impact at aircraft and mission levels. Both liquid cooling and air-cooling TMS, along with using phase change materials (PCMs) for heat storage, were designed and assessed. Two liquid-cooling configurations, series and parallel, were evaluated, with the series configuration proving more effective in the considered test cases. The study compared hover and cruise conditions to determine optimal design point for the liquid-cooling TMS. Designing for hover resulted in about fourfold increase in the TMS penalty in fuel burn during cruise. Designing for cruise, on the other hand, proved infeasible to comply with the thermal management requirements during hover. Two approaches were explored to address this: Approach A involves adding PCMs as a heat storage system and approach B entailed redesigning the TMS with the heat load at off-design conditions for the inverter and motor. Both approaches resulted in a 24% and 46% increase in the TMS penalty in fuel burn compared to the design that solely considering cruise condition, respectively. The assessment of the designed aircraft systems, integrating the TMS for the considered test cases, revealed that the liquid-cooling TMS designed at cruise condition with Approach B emerged as the optimal design, showcasing a 42% improvement in fuel burnt per payload compared to the air-cooling TMS at the mission level.

References

1.
Holden
,
J.
, and
Goel
,
N.
,
2016
, “
Fast-Forwarding to a Future of On-Demand Urban Air Transportation
,” White Paper, Uber, San Francisco, CA.https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf
2.
Volocopter
,
2021
, “
The ROADMAP to Scalable Urban Air Mobility White Paper 2
,” Volocopter, Bruchsal, Germany, accessed Jan. 5, 2024, https://static1.squarespace.com/static/5d27bb3e330ac30001dc14fd/t/6165c265c89c61365aa517f5/1634058869091/Volocopter+v2+Roadmap+to+Scalable+UAM.pdf
3.
Johnson
,
W.
,
Silva
,
C.
, and
Solis
,
E.
,
2018
, “
Concept Vehicles for VTOL Air Taxi Operations
,”
AHS International Technical Meeting on Aeromechanics Design for Transformative Vertical Flight
, San Francisco, CA, Jan. 16–18.https://ntrs.nasa.gov/api/citations/20180003381/downloads/20180003381.pdf
4.
Chapman
,
J. W.
,
Hasseeb
,
H.
, and
Schnulo
,
S.
,
2020
, “
Thermal Management System Design for Electrified Aircraft Propulsion Concepts
,”
AIAA
Paper No. 2020-3571.10.2514/6.2020-3571
5.
Chapman
,
J. W.
,
Schnulo
,
S. L.
, and
Nitzsche
,
M. P.
,
2020
, “
Development of a Thermal Management System for Electrified Aircraft
,”
AIAA
Paper No. 2020-0545.10.2514/6.2020-0545
6.
Chapman
,
J. W.
,
Thomas
, G. L., and Malone, B. P.
,
2021
, “
Development and Integration of a Thermal Management Simulation for a Quadrotor Parallel Hybrid Propulsion System
,”
AIAA
Paper No. 2021-3336.10.2514/6.2021-3336
7.
Annapragada
,
S. R.
,
MacDonald
,
M.
,
Sur
,
A.
,
Mahmoudi
,
R.
, and
Lents
,
C.
,
2018
, “
Hybrid Electric Aircraft Battery Heat Acquisition System
,”
AIAA
Paper No. 2018-4992.10.2514/6.2018-4992
8.
Kellermann
,
H.
,
Lüdemann
,
M.
,
Pohl
,
M.
, and
Hornung
,
M.
,
2020
, “
Design and Optimization of Ram Air-Based Thermal Management Systems for Hybrid-Electric Aircraft
,”
Aerospace
,
8
(
1
), pp.
3
22
.10.3390/aerospace8010003
9.
Rheaume
,
J. M.
, and
Lentsii
,
C. E.
,
2018
, “
Design and Simulation of a Commercial Hybrid Electric Aircraft Thermal Management System
,”
AIAA
Paper No. 2018-4994.10.2514/6.2018-4994
10.
Rheaume
,
J. M.
, and
Lents
,
C. E.
,
2019
, “
Commercial Hybrid Electric Aircraft Thermal Management System Design, Simulation, and Operation Improvements
,”
AIAA
Paper No. 2019-4492.10.2514/6.2019-4492
11.
Rheaume
,
J. M.
, and
Lents
,
C. E.
,
2020
, “
Commercial Hybrid Electric Aircraft Thermal Management Sensitivity Studies
,”
AIAA
Paper No. 2020-3558.10.2514/6.2020-3558
12.
Kang
,
S.
,
Saias
,
C.
,
Roumeliotis
,
I.
, and
Broca
,
O.
,
2023
, “
On the Design of Integrated Thermal Management Systems for eVTOL Aircraft
,”
ASME
Paper No. GT2023-103097.10.1115/GT2023-103097
13.
Saias
,
C. A.
,
Goulos
,
I.
,
Roumeliotis
,
I.
,
Pachidis
,
V.
, and
Bacic
,
M.
,
2021
, “
Preliminary Design of Hybrid-Electric Propulsion Systems for Emerging Urban Air Mobility Rotorcraft Architectures
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111015
.10.1115/1.4052057
14.
Saias
,
C. A.
,
Roumeliotis
,
I.
,
Goulos
,
I.
,
Pachidis
,
V.
, and
Bacic
,
M.
,
2022
, “
Design Exploration and Performance Assessment of Advanced Recuperated Hybrid-Electric Urban Air Mobility Rotorcraft
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031023
.10.1115/1.4052955
15.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
, 2nd ed., Cambridge Aerospace Series, New York.
16.
Bhagwat
,
M. J.
,
2015
, “
Optimum Loading and Induced Swirl Effects in Hover
,”
J. Am. Helicopter Soc.
,
60
(
1
), pp.
1
14
.10.4050/JAHS.60.012004
17.
Mangler
,
K. W.
,
1948
, “
Calculation of the Induced Velocity Field of a Rotor
,” Royal Aircraft Establishment, Farnborough, UK, Report Aero 2247.
18.
Padfield
,
G. D.
,
2007
,
Helicopter Flight Dynamics
,
Blackwell Publishing Ltd
,
Oxford, UK
.
19.
Harendra
,
P. B.
,
Joglekar
,
M. J.
,
Gaffey
,
T. M.
, and
Marr
,
R. L.
,
1973
, “
V/STOL Tilt Rotor Study. Volume 5: A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft
,” Bell Helicopter Company, Fort Worth, TX, Report No.
301-099-001
.https://ntrs.nasa.gov/citations/19730022217
20.
Radu-Petru
,
H.
,
Andrei-Toader
,
F.
,
Claudia Steluta
,
M.
, and
Károly Ágoston
,
B.
,
2012
, “
System-Level Modeling and Simulation of a Permanent Magnet Synchronous Motor for an Integrated Starter Alternator
,”
J. Electr. Electron. Eng.
,
5
, pp.
67
70
.https://www.researchgate.net/publication/291764378_System-level_Modeling_and_Simulation_of_a_Permanent_Magnet_Synchronous_Motor_for_an_Integrated_Starter_Alternator
21.
Petit
,
M.
,
Marc
,
N.
,
Badin
,
F.
,
Mingant
,
R.
, and
Sauvant-Moynot
,
V.
,
2014
, “
A Tool for Vehicle Electrical Storage System Sizing and Modelling for System Simulation
,” 2014 IEEE Vehicle Power and Propulsion Conference (
VPPC
), Coimbra, Portugal, Feb. 27–30, pp.
1
5
.10.1109/VPPC.2014.7007010
22.
Wikner
,
E.
, and
Thiringer
,
T.
,
2018
, “
Extending Battery Lifetime by Avoiding High SOC
,”
Appl. Sci.
,
8
(
10
), p.
1825
.10.3390/app8101825
23.
Roumeliotis
,
I.
,
Mourouzidis
,
C.
,
Zafferetti
,
M.
,
Unlu
,
D.
,
Broca
,
O.
, and
Pachidis
,
V.
,
2020
, “
Assessment of Thermo-Electric Power Plants for Rotorcraft Application
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051003
.10.1115/1.4045103
24.
Kang
,
S.
,
Roumeliotis
,
I.
,
Zhang
,
J.
,
Broca
,
O.
, and
Pachidis
,
V.
,
2022
, “
Assessment of Engine Operability and Overall Performance for Parallel Hybrid Electric Propulsion Systems for a Single-Aisle Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041002
.10.1115/1.4052880
25.
Snyder
,
C. A.
,
2014
, “
Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)
,”
AIAA
Paper No. 2014-3442.10.2514/6.2014-3442
26.
Duffy
,
K. P.
,
2015
, “
Electric Motors for Non-Cryogenic Hybrid Electric Propulsion
,”
AIAA
Paper No. 2015-3891.10.2514/6.2015-3891
27.
National Academies of Science, Engineering and Medicine
,
2016
, “
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,”
Commercial Aircraft Propulsion and Energy Systems Research
,
National Academies Press
,
Washington, DC
.
28.
Danis
,
R. A.
,
Green
,
M. W.
,
Freeman
,
J. L.
, and
Hall
,
D. W.
,
2018
, “
Examining the Conceptual Design Process for Future Hybrid-Electric Rotorcraft
,” Ames Research Center, Moffett Filed, Mountain View, CA, Report No.
NASA/CR—2018–219897
.https://ntrs.nasa.gov/citations/20180003214
29.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
30.
Linstrom, P. J., and Mallard, W. G., 2001, “The NIST Chemistry WebBook: A Chemical Data Resource on the Internet,”
J. Chem. Eng. Data
, 46, pp. 1059–1063.10.1021/je000236i
31.
ChemSrc
,
2024
, “
Hexacosane (CAS No. 630-01-3) Product Information
,” ChemSrc, accessed Jan. 5, 2024, https://www.chemsrc.com/en/cas/630-01-3_594658.html
32.
Scott
,
A. W.
,
1974
,
Cooling of Electronic Equipment
, John Wiley & Sons, New York.
33.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E. et al., 2020, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,”
Nat. Methods
, 17, pp. 261–272.10.1038/s41592-019-0686-2
34.
Louwerse
,
M. C.
,
Jansen
,
H. V.
,
Groenendijk
,
M. N. W.
, and
Elwenspoek
,
M. C.
,
2009
, “
Nozzle Fabrication for Micropropulsion of a Microsatellite
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045008
.10.1088/0960-1317/19/4/045008
35.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
, John
Wiley & Sons
, Hoboken, NJ.
36.
Guo
,
K.
,
Zhang
,
N.
, and
Smith
,
R.
,
2015
, “
Optimisation of Fin Selection and Thermal Design of Counter-Current Plate-Fin Heat Exchangers
,”
Appl. Therm. Eng.
,
78
, pp.
491
499
.10.1016/j.applthermaleng.2014.11.071
37.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchangers
, 3rd ed., Krieger Publishing Company, Malabar, FL.
38.
Mohapatra
,
S. C.
,
2006
, “
An Overview of Liquid Coolants for Electronics Cooling
,” Electronics Cooling, Blue Bell, PA, accessed Jan. 5, 2024, https://www.electronics-cooling.com/2006/05/an-overview-of-liquid-coolants-for-electronics-cooling/
39.
Dunne
,
C.
,
2019
, “
One Dimensional Modelling of Flow Across Bypass Valves in Aerospace Heat Exchangers
,” accessed Jan. 5, 2024, https://www.researchgate.net/publication/359510637
40.
Gregory
,
E. J.
, “
Plate Fin Heat Exchangers
,”
A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering
,
Begellhouse
.10.1615/AtoZ.p.plate_fin_heat_exchangers
41.
Maisel
,
M.
,
1975
, “NASA/Army XV-15
Tilt Rotor Research Aircraft Familiarization Document
,” NASA Ames Research Center, Report No.
TM X-62407
.https://ntrs.nasa.gov/citations/19750016648
You do not currently have access to this content.