Abstract

Predicting thermoacoustic instabilities in annular combustors requires knowledge of the impact of acoustic oscillations on heat release rate (HRR) oscillations. Flame describing functions (FDF) measured at the burner exit using acoustic forcing are key elements of thermoacoustic instability analyses. FDFs based on acoustic pressure measurements, FP, or on axial velocity measurements, FU, are compared here. This study is done on the TACC-Spray bench, an original linear array of spray flames stabilized by a strong swirling flow, representing an unfolded sector of a self-unstable annular combustor. Acoustic forcing of a standing transverse chamber mode is applied downstream of the injectors. Experiments are conducted with liquid n-heptane or dodecane, with the flames placed at a pressure or an intensity antinode (IAN) of the transverse mode. FP does not depend on the measurement location for acoustically compact flames provided that this location remains in the flame vicinity. FU can lead to significant discrepancies, as swirling flows present strong velocity gradients, which can be minimized by carefully choosing the measurement location. The injector admittance linking the two FDFs is shown to be quasi-independent of the forcing amplitude here. Consequently, both FDFs show a similar dependence on the forcing amplitude. FP indicates constructive combustion-acoustics interference whatever the flame location in the acoustic field and the fuel, consistent with self-sustained instabilities observed in the annular combustor. An analysis using the Rayleigh criterion corroborates the results derived from the FDFs. So, FP appears as a powerful and practical tool for characterizing combustion dynamics.

References

1.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
2.
Goy
,
C. J.
,
James
,
S. R.
, and
Rea
,
S.
,
2006
, “
Combustion Instabilities in Gas Turbine Engines
,”
Progress in Astronautics and Aeronautics
, Vol.
210
,
T. C.
Lieuwen
, and
V.
Yang
, eds., American Institute of Aeronautics and Astronautics, Reston, VA, pp.
163
175
.
3.
Candel
,
S.
,
Huynh
,
C.
, and
Poinsot
,
T.
,
1996
,
Unsteady Combustion
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
83
112
.
4.
Mariappan
,
S.
, and
Sujith
,
R. I.
,
2011
, “
Modelling Nonlinear Thermoacoustic Instability in an Electrically Heated Rijke Tube
,”
J. Fluid Mech.
,
680
, pp.
511
533
.10.1017/jfm.2011.176
5.
Sayadi
,
T.
,
Le Chenadec
,
V.
,
Schmid
,
P.
,
Richecœur
,
F.
, and
Massot
,
M.
,
2015
, “
Time-Domain Analysis of Thermo-Acoustic Instabilities in a Ducted Flame
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
1079
1086
.10.1016/j.proci.2014.06.117
6.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
7.
Orchini
,
A.
,
Illingworth
,
S. J.
, and
Juniper
,
M. P.
,
2015
, “
Frequency Domain and Time Domain Analysis of Thermoacoustic Oscillations With Wave-Based Acoustics
,”
J. Fluid Mech.
,
775
, pp.
387
414
.10.1017/jfm.2015.139
8.
Juniper
,
M. P.
,
2023
,
Machine Learning and Its Application to Reacting Flows
, Vol.
44
,
N.
Swaminathan
, and
A.
Parente
, eds.,
Springer
, Cham, Switzerland.
9.
Yoko
,
M.
, and
Juniper
,
M. P.
,
2024
, “
Adjoint-Accelerated Bayesian Inference Applied to the Thermoacoustic Behaviour of a Ducted Conical Flame
,”
J. Fluid Mech.
,
985
, p.
A38
.10.1017/jfm.2024.276
10.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
11.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Sattelmayer
,
T.
,
1997
, “
A Universaily Applicable Stability Criterion for Complex Thermo-Acoustic Systems
,”
VDI-Ber.
, 1313, pp.
455
460
.https://www.researchgate.net/publication/255738675_A_Universaily_Applicable_Stability_Criterion_for_Complex_Thermo-Acoustic_Systems
12.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
7
), pp.
99
128
.10.1080/00102200208984089
13.
Moeck
,
J. P.
,
Oevermann
,
M.
,
Klein
,
R.
,
Paschereit
,
C. O.
, and
Schmidt
,
H.
,
2009
, “
A Two-Way Coupling for Modeling Thermoacoustic Instabilities in a Flat Flame Rijke Tube
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1199
1207
.10.1016/j.proci.2008.05.062
14.
Schuller
,
T.
,
Durox
,
D.
,
Palies
,
P.
, and
Candel
,
S.
,
2012
, “
Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems
,”
Combust. Flame
,
159
(
5
), pp.
1921
1931
.10.1016/j.combustflame.2012.01.010
15.
Han
,
X.
, and
Morgans
,
A. S.
,
2015
, “
Simulation of the Flame Describing Function of a Turbulent Premixed Flame Using an Open-Source LES Solver
,”
Combust. Flame
,
162
(
5
), pp.
1778
1792
.10.1016/j.combustflame.2014.11.039
16.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
21503
.10.1115/1.4028257
17.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
18.
Semlitsch
,
B.
,
Orchini
,
A.
,
Dowling
,
A. P.
, and
Juniper
,
M. P.
,
2017
, “
G-Equation Modelling of Thermoacoustic Oscillations of Partially Premixed Flames
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
260
276
.10.1177/1756827717711405
19.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
20.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
,
Jomaas
,
G.
, and
Candel
,
S.
,
2011
, “
Describing Function Analysis of Limit Cycles in a Multiple Flame Combustor
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061502
.10.1115/1.4002275
21.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Mode Triggering in a Multiple Flame Combustor
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1121
1128
.10.1016/j.proci.2010.05.079
22.
Williams
,
F. A.
,
1985
,
The Mathematics of Combustion
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA, pp.
91
131
.
23.
Boyer
,
L.
, and
Quinard
,
J.
,
1990
, “
On the Dynamics on Anchored Flames
,”
Combust. Flame
,
82
(
1
), pp.
51
65
.10.1016/0010-2180(90)90077-5
24.
Baillot
,
F.
,
Durox
,
D.
, and
Prud'homme
,
R.
,
1992
, “
Experimental and Theoretical Study of a Premixed Vibrating Flame
,”
Combust. Flame
,
88
(
2
), pp.
149
168
.10.1016/0010-2180(92)90049-U
25.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.10.1016/0010-2180(96)00049-1
26.
Dowling
,
A. P.
,
1999
, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
,
394
, pp.
51
72
.10.1017/S0022112099005686
27.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
28.
Preetham
,
P.
, and
Lieuwen
,
T.
,
2004
, “
Nonlinear Flame-Flow Transfer Function Calculations: Flow Disturbance Celerity Effects
,”
AIAA
Paper No. 2004-4035.10.2514/6.2004-4035
29.
Santosh
,
H.
,
Lieuwen
,
T.
, and
Preetham
,
P.
,
2008
, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
,
24
(
6
), pp.
1390
1402
.10.2514/1.35432
30.
Acharya
,
V.
,
Shin
,
D.-H.
, and
Lieuwen
,
T.
,
2012
, “
Swirl Effects on Harmonically Excited, Premixed Flame Kinematics
,”
Combust. Flame
,
159
(
3
), pp.
1139
1150
.10.1016/j.combustflame.2011.09.015
31.
Acharya
,
V.
, and
Lieuwen
,
T.
,
2020
, “
Nonlinear Response of Swirling Premixed Flames to Helical Flow Disturbances
,”
J. Fluid Mech.
,
896
, p.
A6
.10.1017/jfm.2020.315
32.
Price
,
R. B.
,
Hurle
,
I. R.
, and
Sugden
,
T. M.
,
1969
, “
Optical Studies of the Generation of Noise in Turbulent Flames
,”
Symp. (Int.) Combust.
,
12
(
1
), pp.
1093
1102
.10.1016/S0082-0784(69)80487-X
33.
Külsheimer
,
C.
, and
Büchner
,
H.
,
2002
, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Combust. Flame
,
131
(
1–2
), pp.
70
84
.10.1016/S0010-2180(02)00394-2
34.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
35.
de la Cruz Garcia
,
M.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2009
, “
Investigations on the Self-Excited Oscillations in a Kerosene Spray Flame
,”
Combust. Flame
,
156
(
2
), pp.
374
384
.10.1016/j.combustflame.2008.11.018
36.
Sevilla-Esparza
,
C. I.
,
Wegener
,
J. L.
,
Teshome
,
S.
,
Rodriguez
,
J. I.
,
Smith
,
O. I.
, and
Karagozian
,
A. R.
,
2014
, “
Droplet Combustion in the Presence of Acoustic Excitation
,”
Combust. Flame
,
161
(
6
), pp.
1604
1619
.10.1016/j.combustflame.2013.12.012
37.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2018
, “
Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031503
.10.1115/1.4037824
38.
Cáceres
,
M.
,
2019
, “
Impact of Transverse Acoustic Modes on a Linearly Arranged Two-Phase Flow Swirling Flames
,” Ph.D. thesis,
INSA de Rouen Normandie, Normandie Université
, France.
39.
Fratalocchi
,
V.
, and
Kok
,
J. B. W.
,
2018
, “
Ethanol Turbulent Spray Flame Response to Gas Velocity Perturbation
,”
Combust. Theory Modell.
,
22
(
1
), pp.
91
109
.10.1080/13647830.2017.1377848
40.
Kypraiou
,
A. M.
,
Allison
,
P. M.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2018
, “
Response of Flames With Different Degrees of Premixedness to Acoustic Oscillations
,”
Combust. Sci. Technol.
,
190
(
8
), pp.
1426
1441
.10.1080/00102202.2018.1452125
41.
Ćosić
,
B.
,
Terhaar
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2015
, “
Response of a Swirl-Stabilized Flame to Simultaneous Perturbation in Equivalence Ratio and Velocity at High Oscillation Amplitudes
,”
Combust. Flame
,
162
(
4
), pp.
1046
1062
.10.1016/j.combustflame.2014.09.025
42.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.10.1016/j.combustflame.2011.09.006
43.
Han
,
X.
, and
Morgans
,
A. S.
,
2018
, “
Non-Linear Interactions of Two Premixed Flames Explored Large Eddy Simulation With External Acoustic Forcing
,”
Combust. Sci. Technol.
,
190
(
3
), pp.
425
436
.10.1080/00102202.2017.1398148
44.
Rajendram
,
Soundararajan
,
P.
,
Durox
,
D.
,
Renaud
,
A.
,
Vignat
,
G.
, and
Candel
,
S.
,
2022
, “
Swirler Effects on Combustion Instabilities Analyzed With Measured FDFs, Injector Impedances and Damping Rates
,”
Combust. Flame
,
238
, p.
111947
.10.1016/j.combustflame.2021.111947
45.
Eckstein
,
J.
, and
Sattelmayer
,
T.
,
2006
, “
Low-Order Modeling of Low-Frequency Combustion Instabilities in Aeroengines
,”
J. Propul. Power
,
22
(
2
), pp.
425
432
.10.2514/1.15757
46.
Huber
,
A.
, and
Polifke
,
W.
,
2008
, “
Impact of Fuel Supply Impedance on Combustion Stability of Gas Turbines
,”
ASME
Paper No. GT2008-51193.10.1115/GT2008-51193
47.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.10.1016/j.anucene.2013.10.037
48.
Baade
,
P.
,
1972
, “
Combustion Oscillations in Gas-Fired Appliances
,”
Second AGA/IGT Conference on Natural Gas Research and Technology
, p.
1
.
49.
Goldschmidt
,
V. W.
,
Leonard
,
R.
,
Riley
,
J.
,
Wolfbrandt
,
G.
, and
Baade
,
P.
,
1978
, “
Transfer Functions of Gas Flames: Method of Measurement and Representative Data
,”
ASHRAE Trans.
,
84
, pp.
466
476
.
50.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
51.
Baillot
,
F.
,
Patat
,
C.
,
Cáceres
,
M.
,
Blaisot
,
J.-B.
, and
Domingues
,
E.
,
2021
, “
Saturation Phenomenon of Swirling Spray Flames at Pressure Antinodes of a Transverse Acoustic Field
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5987
5995
.10.1016/j.proci.2020.06.046
52.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1998
, “
Control of Thermoacoustic Instabilities and Emissions in an Industrial-Type Gas-Turbine Combustor
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1817
1824
.10.1016/S0082-0784(98)80023-4
53.
O'Connor
,
J.
,
Worth
,
N.
, and
Dawson
,
J.
,
2013
, “
Flame and Flow Dynamics of a Self-Excited, Standing Wave Circumferential Instability in a Model Annular Gas Turbine Combustor
,”
ASME
Paper No. GT2013-95897.10.1115/GT2013-95897
54.
Nygård
,
H. T.
,
Ghirardo
,
G.
, and
Worth
,
N. A.
,
2021
, “
Azimuthal Flame Response and Symmetry Breaking in a Forced Annular Combustor
,”
Combust. Flame
,
233
, p.
111565
.10.1016/j.combustflame.2021.111565
55.
Krediet
,
H. J.
,
Beck
,
C. H.
,
Krebs
,
W.
,
Schimek
,
S.
,
Paschereit
,
C. O.
, and
Kok
,
J. B. W.
,
2012
, “
Identification of the Flame Describing Function of a Premixed Swirl Flame From LES
,”
Combust. Sci. Technol.
,
184
(
7–8
), pp.
888
900
.10.1080/00102202.2012.663981
56.
Pampaloni
,
D.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Paschereit
,
C. O.
,
2018
, “
LES Modelling of the Flame Describing Function of a Lean Premixed Swirl Stabilized Flame
,”
AIAA
Paper No. 2018-4608.10.2514/6.2018-4608
57.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
High Amplitude Combustion Instabilities in an Annular Combustor Inducing Pressure Field Deformation and Flame Blow Off
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011016
.10.1115/1.4045515
58.
Mazur
,
M.
,
Nygård
,
H. T.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2019
, “
Characteristics of Self-Excited Spinning Azimuthal Modes in an Annular Combustor With Turbulent Premixed Bluff-Body Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5129
5136
.10.1016/j.proci.2018.07.080
59.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.10.1016/j.proci.2014.06.029
60.
Mejia
,
D.
,
Miguel-Brebion
,
M.
,
Ghani
,
A.
,
Kaiser
,
T.
,
Duchaine
,
F.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2018
, “
Influence of Flame-Holder Temperature on the Acoustic Flame Transfer Functions of a Laminar Flame
,”
Combust. Flame
,
188
, pp.
5
12
.10.1016/j.combustflame.2017.09.016
61.
Nygård
,
H. T.
, and
Worth
,
N. A.
,
2021
, “
Flame Transfer Functions and Dynamics of a Closely Confined Premixed Bluff Body Stabilized Flame With Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041011
.10.1115/1.4049513
62.
Rajendram
,
Soundararajan
,
P.
,
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2022
, “
Do Flame Describing Functions Suitably Represent Combustion Dynamics Under Self-Sustained Oscillations?
,”
J. Sound Vib.
,
534
, p.
117034
.10.1016/j.jsv.2022.117034
63.
Patat
,
C.
,
Baillot
,
F.
,
Blaisot
,
J.-B.
,
Domingues
,
E.
,
Vignat
,
G.
,
Rajendram
,
Soundararajan
,
P.
,
Renaud
,
A.
,
Durox
,
D.
, and
Candel
,
S.
,
2023
, “
Swirling Spray Flames Dynamical Blow-Out Induced by Transverse Acoustic Oscillations
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4651
4659
.10.1016/j.proci.2022.08.029
64.
Gaudron
,
R.
,
Gatti
,
M.
,
Mirat
,
C.
, and
Schuller
,
T.
,
2019
, “
Flame Describing Functions of a Confined Premixed Swirled Combustor With Upstream and Downstream Forcing
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p. 051016.10.1115/1.4041000
65.
Rajendram
,
Soundararajan
,
P.
,
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2021
, “
Effect of Different Fuels on Combustion Instabilities in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031007
.10.1115/1.4049702
66.
Patat
,
C.
,
2022
, “
Mechanisms of Combustion Dynamics of Swirl-Stabilised Spray Flames in a Standing Transverse Acoustic Field
,” Ph.D. thesis,
Université de Rouen Normandie, Normandie Université
, France.
67.
Lespinasse
,
F.
,
Baillot
,
F.
, and
Boushaki
,
T.
,
2013
, “
Responses of V-Flames Placed in an HF Transverse Acoustic Field From a Velocity to Pressure Antinode
,”
C. R. Méc.
,
341
(
1–2
), pp.
110
120
.10.1016/j.crme.2012.10.015
68.
Mirat
,
C.
,
Durox
,
D.
, and
Schuller
,
T.
,
2014
, “
Analysis of the Spray and Transfer Function of Swirling Spray Flames From a Multi-Jet Steam Assisted Liquid Fuel Injector
,”
ASME
Paper No. GT2014-25111.10.1115/GT2014-25111
69.
Muruganandam
,
T. M.
,
Kim
,
B.-H.
,
Morrell
,
M. R.
,
Nori
,
V.
,
Patel
,
M.
,
Romig
,
B. W.
, and
Seitzman
,
J. M.
,
2005
, “
Optical Equivalence Ratio Sensors for Gas Turbine Combustors
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1601
1609
.10.1016/j.proci.2004.08.247
70.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flows
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.10.1017/S0022112070000605
71.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
72.
Patat
,
C.
,
Baillot
,
F.
,
Blaisot
,
J.-B.
, and
Domingues
,
É.
,
2021
, “
Responses of Lean Swirling Spray Flames to Acoustic Pressure and Transverse Velocity Perturbations
,”
Symposium on Thermoacoustic in Combustion: Industry Meets Academia (SoTiC)
, Munich, Germany, Sept. 6–10, pp.
6
10
.https://hal.science/hal-03717261/document
73.
Patat
,
C.
,
Blaisot
,
J.-B.
,
Domingues
,
E.
, and
Baillot
,
F.
,
2023
, “
Mechanisms of Swirl-Stabilised Spray Flames Dynamics at Various Locations of a Forced Standing Transverse Acoustic Field
,”
Proceedings of the 11th European Combustion Meeting
, Rouen, France, Apr. 26–28, pp.
2196
2201
.https://www.researchgate.net/publication/374068365_Mechanisms_of_swirl-stabilised_spray_flames_dynamics_at_various_locations_of_a_forced_standing_transverse_acoustic_field
74.
Patat
,
C.
,
Blaisot
,
J.-B.
,
Domingues
,
É.
, and
Baillot
,
F.
,
2021
, “
Response of a Spray of n-Heptane or Dodecane at an Acoustic Pressure Antinode in Reactive Conditions
,”
Iclass 2021
, Edinburgh, UK, Aug. 29–Sept. 2, Paper No. 269.https://journals.ed.ac.uk/ICLASS_Edinburgh/article/view/5997
75.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
76.
Blimbaum
,
J.
,
Zanchetta
,
M.
,
Akin
,
T.
,
Acharya
,
V.
,
O'Connor
,
J.
,
Noble
,
D. R.
, and
Lieuwen
,
T.
,
2012
, “
Transverse to Longitudinal Acoustic Coupling Processes in Annular Combustion Chambers
,”
Int. J. Spray Combust. Dyn.
,
4
(
4
), pp.
275
297
.10.1260/1756-8277.4.4.275
77.
Gajan
,
P.
,
Strzelecki
,
A.
,
Platet
,
B.
,
Lecourt
,
R.
, and
Giuliani
,
F.
,
2007
, “
Investigation of Spray Behavior Downstream of an Aeroengine Injector With Acoustic Excitation
,”
J. Propul. Power
,
23
(
2
), pp.
390
397
.10.2514/1.22394
78.
Kumara Gurubaran
,
R.
, and
Sujith
,
R. I.
,
2011
, “
Dynamics of Spray-Swirl-Acoustics Interactions
,”
Int. J. Spray Combust. Dyn.
,
3
(
1
), pp.
1
22
.10.1260/1756-8277.3.1.1
79.
Greenberg
,
J. B.
, and
Katoshevski
,
D.
,
2012
, “
Spray Flame Dynamics With Oscillating Flow and Droplet Grouping
,”
Combust. Theory Modell.
,
16
(
2
), pp.
321
340
.10.1080/13647830.2011.621550
80.
Hurle
,
I. R.
,
Price
,
R. B.
,
Sugden
,
T. M.
, and
Thomas
,
A.
,
1968
, “
Sound Emission From Open Turbulent Premixed Flames
,”
Proc. R. Soc. London, Ser. A
,
303
, pp.
409
427
.10.1098/rspa.1968.0058
81.
Higgins
,
B.
,
McQuay
,
M. Q.
,
Lacas
,
F.
,
Rolon
,
J. C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
82.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescence Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.10.1016/j.combustflame.2004.08.003
83.
Yi
,
T.
, and
Santavicca
,
D. A.
,
2009
, “
Flame Spectra of a Turbulent Liquid-Fueled Swirl-Stabilized Lean-Direct Injection Combustor
,”
J. Propul. Power
,
25
(
5
), pp.
1058
1067
.10.2514/1.43003
84.
Desclaux
,
A.
,
2020
, “
Étude Expérimentale du Comportement Linéaire Et Non Linéaire D'une Flamme Diphasique Soumise à Une Excitation Acoustique
,” Ph.D. thesis,
Université de Toulouse
, Toulouse, France.
85.
Vignat
,
G.
,
2020
, “
Injection and Combustion Dynamics in Swirled Spray Flames and Azimuthal Coupling in Annular Combustors
,” Ph.D. thesis,
Université Paris-Saclay
, Paris, France.
86.
Kather
,
V.
,
Lückoff
,
F.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2021
, “
Interaction of Equivalence Ratio Fluctuations and Flow Fluctuations in Acoustically Forced Swirl Flames
,”
Int. J. Spray Combust. Dyn.
,
13
(
1–2
), pp.
72
95
.10.1177/17568277211015544
87.
Docquier
,
N.
,
Lacas
,
F.
, and
Candel
,
S.
,
2002
, “
Closed-Loop Equivalence Ratio Control of Premixed Combustors Using Spectrally Resolved Chemiluminescence Measurements
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
139
145
.10.1016/S1540-7489(02)80022-0
88.
Lo Schiavo
,
E.
,
Laera
,
D.
,
Riber
,
E.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2020
, “
Effects of Liquid Fuel/Wall Interaction on Thermoacoustic Instabilities in Swirling Spray Flames
,”
Combust. Flame
,
219
, pp.
86
101
.10.1016/j.combustflame.2020.04.015
You do not currently have access to this content.