Abstract

Water-lubricated hydrodynamic journal bearings with deep inclined grooves are often used to support radial loads and dampen pump vibrations in nuclear power plants. The inclined grooves increase the pumping effect of the lubricant thus reducing wear and friction during rotor startup and coast-down. The deep grooves also facilitate the removal of debris without damaging the bearing. The load capacity and the stability of this type of bearing are studied in the present work. A sensitivity study of the impact of the number of grooves on bearing performance underlined the superiority of the journal bearing with two inclined grooves. Moreover, these journal bearings may operate with a mixture of water and air. This compressible two-phase lubricant will modify the load capacity and the stability of the journal bearing. The impact of the ingested volume fraction of air is therefore investigated. A physical model of the homogeneous air–water mixture linking the local air volume fraction with the pressure was used in conjunction with the numerical solution of the compressible Reynolds equation on an unstructured grid. It was found that the air ingestion in the two-inclined grooves journal bearing decreases the load capacity but improves the stability for mild and low loads.

References

1.
Zhang
,
S.
,
2023
, “
Effect of Groove Structure on Lubrication Performance of Water-Lubricated Stern Tube Bearings
,”
Lubricants
,
11
(
9
), p.
374
.10.3390/lubricants11090374
2.
Prajapati
,
D. K.
, and
Ramkumar
,
P.
,
2022
, “
Surface Topography Effect on Tribological Performance of Water-Lubricated Journal Bearing Under mixed-EHL Regime
,”
Surf. Topogr.: Metrol. Prop.
,
10
(
4
), p.
045022
.10.1088/2051-672X/aca2c5
3.
Chow
,
C. Y.
, and
Vohr
,
J. H.
,
1970
, “
Helical-Grooved Journal Bearing Operated in Turbulent Regime
,”
ASME J. Lubr. Technol.
,
92
(
2
), pp.
346
357
.10.1115/1.3451407
4.
Frêne
,
J.
,
Nicolas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
,
1997
,
Hydrodynamic Lubrication: Bearings and Thrust Bearings
,
Elsevier
, Amsterdam, The Netherlands.
5.
Hassini
,
M. A.
,
Zhang
,
S.
,
Chatterton
,
S.
, and
Pennacchi
,
P.
,
2023
, “
Theoretical and Experimental Comparisons for Rotordynamic Coefficients of a Multiscratched Tilting Pad Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021008
.10.1115/1.4055482
6.
Warner
,
P. C.
, and
Thoman
,
R. J.
,
1964
, “
The Effect of the 150° Partial Bearing on Rotor-Unbalance Vibration
,”
ASME J. Basic Eng.
,
86
(
2
), pp.
337
345
.10.1115/1.3653074
7.
Denis
,
S.
,
Hassini
,
M. A.
, and
Arghir
,
M.
,
2015
, “
Non-Linear Analysis of the Defects of a Vertical Turbine
,”
Proceedings of the 9th IFToMM International Conference on Rotor Dynamics
,
Kluwer Academic Publishers
,
Milan, Italy
, Sept. 2014, Vol.
21
, pp.
1629
1640
.10.1007/978-3-319-06590-8_134
8.
Shewchuk
,
J. R.
,
1998
, “
Tetrahedral Mesh Generation by Delaunay Refinement
,”
Proceedings of the Fourteenth Annual Symposium on Computational Geometry
, ACM, Minneapolis, MN, June 7–10, pp.
86
95
.https://www.cs.jhu.edu/~misha/Spring20/Shewchuk98.pdf
9.
Dahite
,
S.
, and
Arghir
,
M.
,
2021
, “
Numerical Modelling of a Segmented Annular Seal With Enhanced Lift Effects
,”
Mech. Syst. Signal Process.
,
152
, p.
107455
.10.1016/j.ymssp.2020.107455
10.
Gehannin
,
J.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2016
, “
A Volume of Fluid Method for Air Ingestion in Squeeze Film Dampers
,”
Tribol. Trans.
,
59
(
2
), pp.
208
218
.10.1080/10402004.2015.1023409
11.
Diaz
,
S.
,
1999
, “
The Effect of Air Entrapment on the Performance of Squeeze Film Dampers: Experiments and Analysis
,”
Ph.D. dissertation
,
Texas A&M University
, College Station, TX.https://ui.adsabs.harvard.edu/abs/1999PhDT.......152D/abstract
12.
Diaz
,
S.
, and
San Andrés
,
L.
,
2001
, “
A Model for Squeeze Film Dampers Operating With Air Entrainment and Validation With Experiments
,”
ASME J. Tribol.
,
123
(
1
), pp.
125
133
.10.1115/1.1330742
13.
Arghir
,
M.
,
Zerarka
,
A.
, and
Pineau
,
G.
,
2011
, “
Rotordynamic Analysis of Textured Annular Seals Multiphase (Bubbly) Flow
,”
Incas. Bull.
,
3
(
3
), pp.
3
13
.10.13111/2066-8201.2011.3.3.1
14.
San Andrés
,
L.
,
2012
, “
Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022503
.10.1115/1.4004130
15.
Voitus
,
A.
,
Arghir
,
M.
, and
Hassini
,
M. A.
,
2023
, “
Effect of Air-Liquid Homogeneous Mixture On the Linear Dynamic Characteristics of a Hydrostatic Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121018
.10.1115/1.4063523
16.
Arghir
,
M.
,
Lez
,
S. L.
, and
Frene
,
J.
,
2006
, “
Finite Volume Solution of the Compressible Reynolds Equation- Linear and Non-Linear Analysis of Gas Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
220
(
7
), pp.
617
627
.10.1243/13506501JET161
17.
Alappat
,
C.
,
Basermann
,
A.
,
Bishop
,
A.-R.
,
Fehske
,
H.
,
Hager
,
G.
,
Schenk
,
O.
,
Thies
,
O.
, and
Wellein
,
O.
,
2020
, “
A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication
,”
ACM Trans. Parallel Comput.
,
7
(
3
), pp.
1
37
.10.1145/3399732
18.
Bollhöfer
,
M.
,
Schenk
,
O.
,
Janalik
,
R.
,
Hamm
,
S.
, and
Gullapalli
,
K.
,
2020
, “
State-of-The-Art Sparse Direct Solvers
,”
Parallel Algorithms in Computational Science and Engineering, Modeling and Simulation in Science, Engineering and Technology
, Birkhäuser, Basel, Switzerland, pp.
3
33
.
19.
Bollhöfer
,
M.
,
Eftekhari
,
A.
,
Scheidegger
,
S.
, and
Schenk
,
O.
,
2019
, “
Large-Scale Sparse Inverse Covariance Matrix Estimation
,”
SIAM J. Sci. Comput.
,
41
(
1
), pp.
A380
A401
.10.1137/17M1147615
20.
Mc Adams
,
W.
,
1954
,
Heat Transmission
, 3rd ed.,
McGraw-Hill
, New York.
21.
Lund
,
J.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
,
90
(
4
), pp.
793
803
.10.1115/1.3601723
22.
Al-Bender
,
F.
,
2021
,
Air Bearings. Theory, Design and Applications
,
Wiley Limited
, Hoboken, NJ, p.
271
.10.1002/9781118926444
You do not currently have access to this content.