Abstract

In support of emission and fuel burn reduction goals, the aviation industry is actively pursuing the advancement of electrified aircraft propulsion (EAP) technology. This includes turbo-electric and hybrid electric propulsion designs that combine gas turbine engine and electrical system hardware. Such architectures exhibit a high degree of coupling between subsystems. This drives the need for system-level control strategies to ensure the safe, coordinated, and efficient operation of all subsystems. The design and certification of any aircraft propulsion system requires that all potential subsystem failures are identified, and the hazards posed by these failures are appropriately mitigated. This requirement is particularly challenging for EAP systems due to their integrated nature. One approach to assist in EAP failure mitigation is the inclusion of automated reconfiguration capabilities within the propulsion control system. Such control modes, referred to as reversionary control modes, are designed to automatically detect failures and activate backup control modes upon failure detection. This paper covers the design and evaluation of reversionary control mode logic developed for a partially turbo-electric propulsion concept. Test results from a real-time hardware-in-the-loop (HIL) evaluation of the concept are also presented and discussed. The results show that the developed reversionary control logic can successfully detect and mitigate subsystem failures in a representative environment that includes actual electrical system hardware.

References

1.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,”
AIAA
Paper No. 2017-4701.10.2514/6.2017-4701
2.
National Academies of Sciences, Engineering, and Medicine
,
2016
,
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
The National Academies Press
,
Washington, DC
.
3.
SAE International Aerospace Recommended Practice
,
2010
, “
Guidelines for Development of Civil Aircraft and Systems
,”
SAE
Paper No. ARP4754A.10.4271/ARP4754A
4.
SAE International Aerospace Recommended Practice
,
1996
, “
Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment
,”
SAE
Paper No. ARP4761.10.4271/ARP4761
5.
Courtin
,
C.
, and
Hansman
,
R. J.
,
2018
, “
Safety Considerations in Emerging Electric Aircraft Architectures
,”
AIAA
Paper No. 2018-4149.10.2514/6.2018-4149
6.
Simon
,
D. L.
, and
Connolly
,
J. W.
,
2020
, “
Electrified Aircraft Propulsion Systems: Gas Turbine Control Considerations for the Mitigation of Potential Failure Modes and Hazards
,”
ASME
Paper No. GT2020-16335.10.1115/GT2020-16335
7.
Zhang
,
D.
,
Xu
,
Y.
,
Zhang
,
Z.
,
Dong
,
D.
,
Cao
,
Y.
,
Mcginnis
,
P.
, and
Keck
,
B.
,
2023
, “
A Solid-State Circuit Breaker for Hybrid Electric Propulsion
,”
AIAA
Paper No. 2023-4155.10.2514/6.2023-4155
8.
Flynn
,
M. C.
,
Jones
,
C.
,
Rakhra
,
P.
,
Norman
,
P.
, and
Galloway
,
S.
,
2017
, “
Impact of Key Design Constraints on Fault Management Strategies for Distributed Electrical Propulsion Aircraft
,”
AIAA
Paper No. 2017-5034.10.2514/6.2017-5034
9.
Kuhlberg
,
J. F.
,
Newirth
,
D. M.
,
Kniat
,
J.
, and
Zimmerman
,
W. H.
,
1984
, “
Integration of the PW2037 Engine Electronic Control System in the Boeing 757 Airplane
,”
SAE
Paper No. 841554.10.4271/841554
10.
Bosco
,
C. J.
,
1987
, “
Certification Issues For Electrical and/or Electronic Engine Controls
,”
SAE
Paper No. 871844.10.4271/871844
11.
Evans
,
J. F. O.
,
1981
, “
Fault Trees and System Reliability Analysis With Reference to the Control of Aircraft Engines
,” AGARD-LS-113, Microcomputer Applications in Power and Propulsion Systems, London, UK, Apr. 2–3, pp.
92
108
.
12.
Kratz
,
J. L.
, and
Simon
,
D. L.
,
2024
, “
Failure Behavior and Control-Based Mitigation for a Parallel Hybrid Propulsion System
,”
AIAA
Paper No. 2014-0522.10.2514/6.2014-0522
13.
Kratz
,
J. L.
, and
Simon
,
D. L.
,
2022
, “
Failure Modes and Mitigation Strategies for a Turboelectric Aircraft Concept With Turbine Electrified Energy Management
,”
AIAA
Paper No. 2022-1191.10.2514/6.2022-1191
14.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
AIAA
Paper No. 2016-1027.10.2514/6.2016-1027
15.
Felder
,
J. L.
,
Schnulo
,
S. L.
,
Tong
,
M. T.
,
Berton
,
J. J.
,
Thacker
,
R. P.
, and
Haller
,
W. J.
,
2022
, “
An Updated Assessment of Turboelectric Boundary Layer Ingestion Propulsion Applied to a Single-Aisle Commercial Transport
,” Report No.
NASA/TM-20210016661
.https://ntrs.nasa.gov/citations/20210016661
16.
Kratz
,
J. L.
,
Culley
,
D. E.
, and
Thomas
,
G. L.
,
2019
, “
A Control Strategy for Turbine Electrified Energy Management
,”
AIAA
Paper No. 2019-4499.10.2514/6.2019-4499
17.
Litt
,
J. S.
,
Sachs-Wetstone
,
J. J.
,
Simon
,
D. L.
,
Sowers
,
T. S.
,
Owen
,
A. K.
,
Bell
,
M. E.
,
Guthrie
,
B. E.
,
Lehan
,
J.
, and
Castro
,
A.
,
2023
, “
Flight Simulator Demonstration and Certification Implications of Powertrain Failure Mitigation in a Partial Turboelectric Aircraft
,”
AIAA
Paper No. 2023-4156.10.2514/6.2023-4156
18.
Lytle
,
J.
,
Follen
,
G.
,
Naiman
,
C.
,
Evans
,
A.
,
Veres
,
J.
,
Owen
,
K.
, and
Lopez
,
I.
,
2000
, “
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
,” Report No.
NASA/TM-2000-209795
.https://ntrs.nasa.gov/api/citations/20000120213/downloads/20000120213.pdf
19.
Simon
,
D. L.
,
Bianco
,
S. J.
, and
Horning
,
M. A.
,
2024
, “
Integrated Control Design for a Partially Turboelectric Aircraft Propulsion System
,”
ASME J. Eng. Gas Turbines Power
,
146
(
7
), p.
070903
.10.1115/1.4063715
20.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
May
,
R. D.
,
Litt
,
J. S.
, and
Guo
,
T.-H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User’s Guide
,” Report No.
NASA/TM-2014-216638
.https://ntrs.nasa.gov/citations/20140012486
21.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2018
, “
An Approach for Utilizing Power Flow Modeling for Simulations of Hybrid Electric Propulsion Systems
,”
AIAA
Paper No. 2018-5018.10.2514/6.2018-5018
22.
Jaw
,
L.
, and
Mattingly
,
J.
,
2009
,
Aircraft Engine Controls
,
American Institute of Aeronautics and Astronautics
,
New York
.
23.
May
,
R. D.
, and
Garg
,
S.
,
2012
, “
Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators
,”
ASME
Paper No. GT2012-70017.10.1115/GT2012-70017
24.
Scoles
,
R. J.
,
1986
, “
FADEC – Every Jet Engine Should Have One
,”
SAE
Paper No. 861802.10.4271/861802
25.
Buescher
,
H. E.
,
Culley
,
D. E.
,
Bianco
,
S. J.
,
Connolly
,
J. W.
,
Dimston
,
A. E.
,
Saus
,
J. R.
,
Theman
,
C. J.
,
Horning
,
M. A.
, and
Purpera
,
N. C.
,
2023
, “
Hybrid-Electric Aero-Propulsion Controls Testbed: Overview and Capability
,”
AIAA
Paper No. 2023-0671.10.2514/6.2023-0671
26.
Simon
,
D. L.
,
Bianco
,
S. J.
,
Horning
,
M. A.
,
Saus
,
J. R.
,
Amthor
,
A. E.
, and
Sachs-Wetstone
,
J. J.
,
2023
, “
Real-Time Hardware-in-the-Loop Evaluation of a Partially Turboelectric Propulsion Control Design
,”
AIAA
Paper No. 2023-4235.10.2514/6.2023-4235
27.
Bianco
,
S. J.
,
Simon
,
D. L.
, and
Hill
,
E. D.
,
2024
, “
Adaptive Control and Scaling Approach for the Emulation of Dynamic Subscale Torque Loads
,”
AIAA
Paper No. 2024-2356.10.2514/6.2024-2356
You do not currently have access to this content.