Abstract

Low hysteresis brush seals are frequently used in systems operating at a high speed in environments featuring a high temperature and pressure. The high-speed rotor comes into contact with the bottom end of the bristles of the brush seal in such scenarios to generate a significant amount of frictional heat, which directly affects its sealing performance and service life, while a high temperature can increase the magnitude of its friction-induced heat. In this study, we report the cyclical testing of a low hysteresis brush seal while increasing and decreasing the speed of the rotor under varying differences in the pressure and temperature. We focus on the characteristics of leakage, hysteresis effect, and temperature rise at the bottom end of the bristles of the brush seal owing to frictional heat. The results showed that the volume of leakage increased at a high temperature under a strong hysteresis effect and a small rise in the temperature. Moreover, as the speed of the rotor exceeded 6000 rpm, the temperature of the system increased rapidly owing to frictional heat. During the speed decrease stage, the temperature rise decreased sharply and then gradually until it became nearly constant. The hysteresis effect resulted in a lower temperature rise during the decrease in the speed of the rotor compared with that during an increase in its speed. While the low hysteresis structure can effectively reduce hysteresis effect compared with that of the conventional brush seal, it induced greater leakage. It is necessary to choose a pressure relief chamber of a suitable size to minimize leakage. Furthermore, the low hysteresis brush seal exhibited a smaller friction temperature rise than the conventional seal, where this is beneficial for its service life.

References

1.
Chupp
,
R. E.
,
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Demiroglu
,
M.
, and
Aksit
,
M. F.
,
2002
, “
Advanced Seals for Industrial Applications: Dynamic Seal Development
,”
J. Propul. Power
,
18
(
6
), pp.
1260
1266
.10.2514/2.6061
2.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
3.
Wei
,
Y.
,
Ran
,
X.
,
Xiong
,
B.
, and
Liu
,
S.
,
2023
, “
Influence of Brush Seal Hysteresis Effect on the Nonlinear Characteristics of Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
121
, p.
107239
.10.1016/j.cnsns.2023.107239
4.
Zhao
,
H.
, and
Stango
,
R. J.
,
2007
, “
Role of Distributed Interbristle Friction Force on Brush Seal Hysteresis
,”
ASME J. Tribol.
,
129
(
1
), pp.
199
204
.10.1115/1.2401218
5.
Short
,
J. F.
,
Basu
,
P.
,
Datta
,
A.
,
Loewenthal
,
R. G.
, and
Prior
,
R. J.
,
1996
, “
Advanced Brush Seal Development
,”
AIAA
Paper No. 96-290710.2514/6.96-2907.
6.
Huang
,
S. Q.
,
Suo
,
S. F.
,
Li
,
Y. J.
, and
Wang
,
Y. M.
,
2015
, “
Experimental Study on Pressure-Balanced Brush Seals at Low Speeds
,” Control, Mechatronics and Automation Technology, Proceedings of the International Conference on Control, Mechatronics and Automation Technology (
ICCMAT 2014
),
CRC Press
,
Beijing, China
,
July 24–25
, Vol.
6
, p.
13
.https://www.taylorfrancis.com/chapters/edit/10.1201/b19371-7/experimental-studypressure-balanced-brush-seals-low-speeds-huang-suo-li-wang
7.
Basu
,
P.
,
Datta
,
A.
,
Loewenthal
,
R.
,
Short
,
J.
, and
Johnson
,
R.
,
1994
, “
Hysteresis and Bristle Stiffening Effects in Brush Seals
,”
J. Propul. Power
,
10
(
4
), pp.
569
575
.10.2514/3.23810
8.
Song
,
P.
,
Ma
,
D.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Numerical and Experimental Investigations on the Leakage Flow Characteristics and Temperature Distributions of Brush Seals
,”
ASME
Paper No. GT2023-102763.10.1115/GT2023-102763
9.
Li
,
P. F.
,
2020
, “
Research on Hysteresis Effect of Brush Seal and Optimal Design of Low Hysteresis Bush Seal
,” Masters' thesis,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, China
.
10.
Outirba
,
B.
,
Hendrick
,
P.
, and
Nicolas
,
K.
,
2017
, “
Experimental Characterisation of Carbon Fibre Brush Seal Leakage Performance as a Function of Bristle Pack Geometrical Parameters Under Dry Conditions
,”
Aeronaut. J.
,
121
(
1245
), pp.
1627
1647
.10.1017/aer.2017.92
11.
Arora
,
G. K.
,
Proctor
,
M. P.
,
Arora
,
G.
, and
Proctor
,
M.
,
1997
, “
JTAGG II Brush Seal Test Results
,”
AIAA
Paper No. 1997-2632.10.2514/6.1997-2632
12.
Zhou
,
K.
,
Li
,
N.
,
Guo
,
H.
,
Wang
,
X. Y.
, and
Tan
,
J.
,
2017
, “
Experimental Investigation on Leakage Characteristics of Low Hysteresis Brush Seals
,”
Lubr. Eng.
,
42
(
4
), pp.
132
136
.10.3969/j.issn.0254-0150.2017.04.025
13.
Zhou
,
K.
,
Pan
,
J.
,
Wang
,
X. Y.
,
Li
,
N.
, and
Hu
,
T. X.
,
2020
, “
Experimental Investigation for Effects of Back Plate Structure on Leakage Characteristics of Brush Seal
,”
J. Propul. Technol.
,
41
(
12
), pp.
2834
2839
.
14.
Demiroglu
,
M.
, and
Tichy
,
J. A.
,
2007
, “
An Investigation of Heat Generation Characteristics of Brush Seals
,”
ASME
Paper No. GT2007-28043.10.1115/GT2007-28043
15.
Flouros
,
M.
,
Stadlbauer
,
M.
,
Cottier
,
F.
,
Proestler
,
S.
, and
Beichl
,
S.
,
2012
, “
Transient Temperature Measurements in the Contact Zone Between Brush Seals of Kevlar and Metallic Type for Bearing Chamber Sealing Using a Pyrometric Technique
,”
ASME
Paper No. GT2012-68354.10.1115/GT2012-68354
16.
Ruggiero
,
E.
,
Allen
,
J.
,
Demiroglu
,
M.
, and
Lusted
,
R. M.
,
2007
, “
Heat Generation Characteristics of a Kevlar Fiber Brush Seal
,”
AIAA
Paper No. 2007-5738.10.2514/6.2007-5738
17.
Raben
,
M.
,
Friedrichs
,
J.
, and
Flegler
,
J.
,
2016
, “
Brush Seal Frictional Heat Generation-Test Rig Design and Validation Under Steam Environment
,”
ASME
Paper No. GT2016-56951.10.1115/GT2016-56951
18.
Hildebrandt
,
M.
,
Schwitzke
,
C.
, and
Bauer
,
H.
,
2017
, “
Experimental Investigation on the Influence of Geometrical Parameters on the Frictional Heat Input and Leakage Performance of Brush Seals
,”
ASME
Paper No. GTP-17-1498.10.1115/GTP-17-1498
19.
Hildebrandt
,
M.
,
Schwitzke
,
C.
, and
Bauer
,
H. J.
,
2019
, “
Experimental Investigation on the Influence of Geometrical Parameters on the Frictional Heat Input and Leakage Performance of Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042504
.10.1115/1.4038767
20.
Hildebrandt
,
M.
,
Schwarz
,
H.
,
Schwitzke
,
C.
,
Bauer
,
H.-J.
, and
Friedrichs
,
J.
,
2018
, “
Effects of the Back Plate Inner Diameter on the Frictional Heat Input and General Performance of Brush Seals
,”
Aerospace
,
5
(
2
), p.
58
.10.3390/aerospace5020058
21.
Outirba
,
B.
, and
Hendrick
,
P.
,
2020
, “
Experimental Characterization of Friction and Heat Generation of Carbon Fibre Brush Seals for Aero-Engines
,”
Tribol. Int.
,
151
, p.
106448
.10.1016/j.triboint.2020.106448
22.
Wu
,
S. Z.
,
Jian
,
P.
,
Li
,
N.
,
Pan
,
J.
, and
Wang
,
Z. J.
,
2019
, “
Numerical Calculation and Experiment on Temperature Field of Friction Heat Generation of Brush Seal
,”
J. Aerosp. Power
,
34
(
4
), pp.
737
743
.
23.
Versluis
,
J.
,
Mosbacher
,
M.
,
Göttler
,
J.
, and
Mandard
,
R.
,
2023
, “
Brush Seal Wear Measurements for High-Speed, High-Temperature, Low-Pressure-Turbine Applications
,”
ASME
Paper No. GT2023-103022.10.1115/GT2023-103022
24.
Hildebrandt
,
M.
,
Munz
,
O.
,
Schwitzke
,
C.
, and
Bauer
,
H. J.
,
2020
, “
Experimental Study on the Wear-In Behaviour of Brush Seals
,”
ASME
Paper No. GT2020-14158.10.1115/GT2020-14158
25.
Lattime
,
S. B.
,
Braun
,
M. J.
,
Choy
,
F. K.
,
Hendricks
,
R. C.
, and
Steinetz
,
B. M.
,
1998
, “
Advances in Hybrid Floating Brush Seals
,”
AIAA
Paper No. 98-3171.10.2514/6.98-3171
26.
Chupp
,
R.
,
Dinc
,
S.
, and
Turnquist
,
N. T.
,
2020
, “
GE Industrial Turbine Advanced Seal Development
,”
Report No. USA/CP-2000-210472.1
,
NASA, Seal/Secondary Air System Workshop
,
Cleveland, OH
, Vol.
1999
, pp.
161
174
.
27.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 4th ed.,
Wiley, Inc
.,
New York
.
You do not currently have access to this content.