Abstract

The need to burn 100% H2 in high efficient gas turbines featuring low NOx combustion in premix mode requires the complete redesign of the combustion system to ensure stable operation without any flashback. Since all engine frames featuring a power range from 4 MW up to 600 MW are affected, a huge design effort is expected. To reduce this effort, especially to transfer knowledge between the different engine classes, generative design methods using latest AI technology will provide promising potential. In this work, this challenge is approached utilizing the current advances in generative artificial intelligence. We train an invertible neural network (INN) on an expandable database of geometrically parameterized combustor designs with simulated performance labels. Utilizing the INN in its inverse direction, multiple design proposals are generated, which fulfill specified performance labels.

References

1.
Krebs
,
W.
,
Schulz
,
A.
,
Witzel
,
B.
,
Johnson
,
C.
,
Laster
,
W.
,
Pent
,
J.
,
Schilp
,
R.
,
Wasif
,
S.
, and
Weaver
,
A.
,
2022
, “
Advanced Combustion System for High Efficiency (ACE) of the New SGT5/6-9000HL Gas Turbine
,”
ASME
Paper No. GT2022-82299.10.1115/GT2022-82299
2.
Witzel
,
B.
,
Moëll
,
D.
,
Parsania
,
N.
,
Yilmaz
,
E.
, and
Koenig
,
M.
,
2022
, “
Development of a Fuel Flexible H2-Natural Gas Turbine Combustion Technology Platform
,”
ASME
Paper No. GT2022-82881.10.1115/GT2022-82881
3.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Chichester,
UK
.
4.
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
, Vol.
1
,
Springer
,
New York
.
5.
Zhou
,
Q.
,
Zhao
,
M.
,
Hu
,
J.
, and
Ma
,
M.
,
2022
,
Multi-Fidelity Surrogates: Modeling Optimization and Applications
(Engineering Applications of Computational Methods, Vol.
12
),
Springer
,
Singapore
.
6.
Groetsch
,
C. W.
, and
Groetsch
,
C.
,
1993
,
Inverse Problems in the Mathematical Sciences
, Vol.
52
,
Springer
,
Wiesbaden, Germany
.
7.
Sohl-Dickstein
,
J.
,
Weiss
,
E.
,
Maheswaranathan
,
N.
, and
Ganguli
,
S.
,
2015
, “
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics
,” Proceedings of the 32nd International Conference on Machine Learning (
Proceedings of Machine Learning Research
, Vol. 37),
Lille, France
, July 8, PMLR, pp.
2256
2265
.https://proceedings.mlr.press/v37/sohldickstein15.pdf
8.
Croitoru
,
F.
,
Hondru
,
V.
,
Ionescu
,
R.
, and
Shah
,
M.
,
2023
, “
Diffusion Models in Vision: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
9
), pp.
10850
10869
.10.1109/TPAMI.2023.3261988
9.
Rombach
,
R.
,
Blattmann
,
A.
,
Lorenz
,
D.
,
Esser
,
P.
, and
Ommer
,
B.
,
2022
, “
High-Resolution Image Synthesis With Latent Diffusion Models
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, New Orleans, LA, June 21–24, pp.
10684
10695
.https://www.computer.org/csdl/proceedingsarticle/cvpr/2022/694600k0674/1H1iFsO7Zuw
10.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.10.1145/3422622
11.
Kim
,
H.
,
Kim
,
J.
,
Won
,
S.
, and
Lee
,
C.
,
2021
, “
Unsupervised Deep Learning for Super-Resolution Reconstruction of Turbulence
,”
J. Fluid Mech.
,
910
, p.
A29
.10.1017/jfm.2020.1028
12.
Drygala
,
C.
,
Winhart
,
B.
,
di Mare
,
F.
, and
Gottschalk
,
H.
,
2022
, “
Generative Modeling of Turbulence
,”
Phys. Fluids
,
34
(
3
), p.
035114
.10.1063/5.0082562
13.
Gui
,
J.
,
Sun
,
Z.
,
Wen
,
Y.
,
Tao
,
D.
, and
Ye
,
J.
,
2023
, “
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
,”
IEEE Trans. Knowl. Data Eng.
,
35
(
4
), pp.
3313
3332
.10.1109/TKDE.2021.3130191
14.
Chen
,
R. T. Q.
,
Rubanova
,
Y.
,
Bettencourt
,
J.
, and
Duvenaud
,
D. K.
,
2018
, “
Neural Ordinary Differential Equations
,”
Advances in Neural Information Processing Systems
, Vol.
31
,
Curran Associates
, Montréal, QC, Canada.https://openreview.net/forum?id=rJed6j0cKX
15.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S. J.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2018
, “
Analyzing Inverse Problems With Invertible Neural Networks
,” 7th International Conference on Learning Representations (
ICLR
), New Orleans, LA, May 6–9.https://openreview.net/forum?id=rJed6j0cKX
16.
Chan
,
R.
,
Penquitt
,
S.
, and
Gottschalk
,
H.
,
2023
, “
LU-Net: Invertible Neural Networks Based on Matrix Factorization
,” 2023 International Joint Conference on Neural Networks (
IJCNN
), Gold Coast, Australia, June 18–23, pp. 1–10.10.1109/IJCNN54540.2023.10191440
17.
Krebs
,
W.
,
Krediet
,
H.
,
Portillo
,
E.
,
Hermeth
,
S.
,
Poinsot
,
T.
,
Schimek
,
S.
, and
Paschereit
,
O.
,
2013
, “
Comparison of Nonlinear to Linear Thermoacoustic Stability Analysis of a Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081503
.10.1115/1.4023887
18.
Siemens
,
2019
, “
STAR-CCM+ User Guide Version 13.04
,” Siemens PLM Software, Plano, TX.
19.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Bohn
,
D.
,
2001
, “
Prediction and Measurement of Thermoacoustic Improvements in Gas Turbines With Annular Combustion Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
557
566
.10.1115/1.1374437
20.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High Intense Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
7
), pp.
99
128
.10.1080/00102200208984089
21.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
22.
Ardizzone
,
L.
,
Lüth
,
C.
,
Kruse
,
J.
,
Rother
,
C.
, and
Köthe
,
U.
,
2019
, “
Guided Image Generation With Conditional Invertible Neural Networks
,” e-print
arXiv:1907.02392
.10.48550/arXiv.1907.02392
23.
Kingma
,
D. P.
, and
Dhariwal
,
P.
,
2018
, “
Glow: Generative Flow With Invertible 1 × 1 Convolutions
,”
Advances in Neural Information Processing Systems
, Vol.
31
,
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
, eds.,
Curran Associates
, Montréal, QC, Canada.
24.
Ishikawa
,
I.
,
Teshima
,
T.
,
Tojo
,
K.
,
Oono
,
K.
,
Ikeda
,
M.
, and
Sugiyama
,
M.
,
2023
, “
Universal Approximation Property of Invertible Neural Networks
,”
J. Mach. Learn. Res.
,
24
(
287
), pp.
1
68
.http://jmlr.org/papers/v24/22-0384.html
25.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2016
, “
Density Estimation Using Real NVP
,” 5th International Conference on Learning Representations (
ICLR
), Toulon, France, Apr. 24–26.https://openreview.net/forum?id=HkpbnH9lx
26.
Kobyzev
,
I.
,
Prince
,
S. J.
, and
Brubaker
,
M. A.
,
2021
, “
Normalizing Flows: An Introduction and Review of Current Methods
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
11
), pp.
3964
3979
.10.1109/TPAMI.2020.2992934
27.
Gretton
,
A.
,
Borgwardt
,
K. M.
,
Rasch
,
M. J.
,
Schölkopf
,
B.
, and
Smola
,
A.
,
2012
, “
A Kernel Two-Sample Test
,”
J. Mach. Learn. Res.
,
13
(
25
), pp.
723
773
.http://jmlr.org/papers/v13/gretton12a.html
28.
Ardizzone
,
L.
,
Bungert
,
T.
,
Draxler
,
F.
,
Köthe
,
U.
,
Kruse
,
J.
,
Schmier
,
R.
, and
Sorrenson
,
P.
,
2018
–2022, “
Framework for Easily Invertible Architectures (FrEIA)
,” accessed June 2022, https://github.com/vislearn/FrEIA
29.
Fukushima
,
K.
,
1975
, “
Cognitron: A Self-Organizing Multilayered Neural Network
,”
Biol. Cybern.
,
20
(
3–4
), pp.
121
136
.10.1007/BF00342633
30.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, “
Adam: A Method for Stochastic Optimization
,” 3rd International Conference on Learning Representations (
ICLR
), San Diego, CA, May 7–9.https://arxiv.org/abs/1412.6980
31.
Li
,
L.
,
Jamieson
,
K.
,
DeSalvo
,
G.
,
Rostamizadeh
,
A.
, and
Talwalkar
,
A.
,
2018
, “
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
,”
J. Mach. Learn. Res.
,
18
(
185
), pp.
1
52
.http://jmlr.org/papers/v18/16-558.html
32.
Lindauer
,
M.
,
Eggensperger
,
K.
,
Feurer
,
M.
,
Biedenkapp
,
A.
,
Deng
,
D.
,
Benjamins
,
C.
,
Ruhkopf
,
T.
,
Sass
,
R.
, and
Hutter
,
F.
,
2022
, “
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
,”
J. Mach. Learn. Res.
,
23
(
54
), pp.
1
9
.http://jmlr.org/papers/v23/21-0888.html
33.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
10
), pp.
281
305
.http://jmlr.org/papers/v13/bergstra12a.html
34.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
You do not currently have access to this content.