Abstract

Metal laser powder bed fusion (PBF-LB/M) allows for high degrees of design freedom and the manufacture of high-temperature Ni-based materials, such as IN738LC. The PBF-LB/M microstructure is dependent on several factors, including process parameters, component geometry, build orientation and postprocessing steps (e.g., heat treatment). The correlation between the resulting microstructure and these parameters is material specific and not yet fully understood. In this study, the development of a specimen extraction cube (SEC), based on a generic component with design aspects related to turbomachinery applications, is presented. The SEC allows for the extraction of three samples, one for each of the build orientations: 0 deg (perpendicular to build direction), 45 deg (diagonal) and 90 deg (parallel to build direction). Specimens extracted from the SEC are mechanically tested and compared to witness samples manufactured in 0 deg, 45 deg, and 90 deg build orientation. Particular focus is placed on correlating measured properties and their variations with heat treated microstructures. Creep testing was performed using 240 MPa and a temperature of 850 °C. Microstructural differences and hence differences in mechanical properties are found in extracted and witness samples.

References

1.
DIN EN ISO 17296-3:2016-12
, 2016, “Additive Manufacturing - General Principles - Part 3: Main Characteristics and Corresponding Test Methods (
ISO 17296-3:2014
),”.10.31030/2580025
2.
DIN EN ISO 17296-4:2016-12
, 2016, “Additive Manufacturing - General Principles - Part 4: Overview of Data Processing (
ISO 17296-4:2014
),”.10.31030/2580026
3.
DIN EN ISO/ASTM 52900:2022-03
, 2022, “Additive Manufacturing - General Principles - Fundamentals and Vocabulary (
ISO/ASTM 52900:2021
),”.10.31030/3290011
4.
Risse
,
J.
,
2019
, “
Additive Fertigung Der Nickelbasis-Superlegierung IN738LC Mittels Selektivem Laserstrahlschmelzen
,” Dissertation,
RWTH Aachen University
,
Aachen, Germany
.
5.
Bieber
,
C. G. G. J.
,
1967
, “
Cast Nickel-Base Alloy
,” Patent No. US3459545 A.
6.
Sims
,
C.
,
1984
, “
A History of Superalloy Metallurgy for Superalloy Metallurgists
,”
Superalloys
, pp.
399
419
.10.7449/1984/Superalloys_1984_399_419
7.
Cloots
,
M.
,
Uggowitzer
,
P. J.
, and
Wegener
,
K.
,
2016
, “
Investigations on the Microstructure and Crack Formation of IN738LC Samples Processed by Selective Laser Melting Using Gaussian and Doughnut Profiles
,”
Mater. Des.
,
89
(
Part B
), pp.
770
784
.10.1016/j.matdes.2015.10.027
8.
Divya
,
V. D.
,
Muñoz-Moreno
,
R.
,
Messé
,
O.
,
Barnard
,
J. S.
,
Baker
,
S.
,
Illston
,
T.
, and
Stone
,
H. J.
,
2016
, “
Microstructure of Selective Laser Melted CM247 LC Nickel-Based Superalloy and Its Evolution Through Heat Treatment
,”
Mater. Charact.
,
114
, pp.
62
74
.10.1016/j.matchar.2016.02.004
9.
Wang
,
X.
,
Carter
,
L. N.
,
Pang
,
B.
,
Attallah
,
M. M.
, and
Loretto
,
M. H.
,
2017
, “
Microstructure and Yield Strength of SLM-Fabricated CM247 LC Ni-Superalloy
,”
Acta Mater.
,
128
, pp.
87
95
.10.1016/j.actamat.2017.02.007
10.
Yadroitsev
,
I.
,
2009
,
Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders
,
LAP Lambert Academic Publishing
,
London, UK
.
11.
Wang
,
X.
,
Gong
,
X.
, and
Chou
,
K.
,
2017
, “
Review on Powder-Bed Laser Additive Manufacturing of Inconel 718 Parts
,”
Proc. Inst. Mech. Eng., Part B
,
231
(
11
), pp.
1890
1903
.10.1177/0954405415619883
12.
Ur Rehman
,
A.
,
Pitir
,
F.
, and
Salamci
,
M. U.
,
2021
, “
Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study
,”
Materials
,
14
(
21
), p.
6683
.10.3390/ma14216683
13.
Caiazzo
,
F.
,
Alfieri
,
V.
,
Corrado
,
G.
, and
Argenio
,
P.
,
2017
, “
Laser Powder-Bed Fusion of Inconel 718 to Manufacture Turbine Blades
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
4023
4031
.10.1007/s00170-017-0839-3
14.
Choi
,
J.-P.
,
Shin
,
G.-H.
,
Yang
,
S.
,
Yang
,
D.-Y.
,
Lee
,
J.-S.
,
Brochu
,
M.
, and
Yu
,
J.-H.
,
2017
, “
Densification and Microstructural Investigation of Inconel 718 Parts Fabricated by Selective Laser Melting
,”
Powder Technol.
,
310
, pp.
60
66
.10.1016/j.powtec.2017.01.030
15.
Uhlmann
,
E.
,
Düchting
,
J.
,
Petrat
,
T.
,
Krohmer
,
E.
,
Graf
,
B.
, and
Rethmeier
,
M.
,
2021
, “
Effects on the Distortion of Inconel 718 Components Along a Hybrid Laser-Based Additive Manufacturing Process Chain Using Laser Powder Bed Fusion and Laser Metal Deposition
,”
Prog. Addit. Manuf.
,
6
(
3
), pp.
385
394
.10.1007/s40964-021-00171-9
16.
Megahed
,
S.
,
Koch
,
R.
, and
Schleifenbaum
,
J. H.
,
2022
, “
Laser Powder Bed Fusion Tool Repair: Statistical Analysis of 1.2343/H11 Tool Steel Process Parameters and Microstructural Analysis of the Repair Interface
,”
J. Manuf. Mater. Process.
,
6
(
6
), p.
139
.10.3390/jmmp6060139
17.
Bi
,
G.
,
Sun
,
C.-N.
,
Chen
,
H.
,
Ng
,
F. L.
, and
Ma
,
C. C. K.
,
2014
, “
Microstructure and Tensile Properties of Superalloy IN100 Fabricated by Micro-Laser Aided Additive Manufacturing
,”
Mater. Des.
,
60
, pp.
401
408
.10.1016/j.matdes.2014.04.020
18.
Dadbakhsh
,
S.
,
Hao
,
L.
, and
Sewell
,
N.
,
2012
, “
Effect of Selective Laser Melting Layout on the Quality of Stainless Steel Parts
,”
Rapid Prototyping J.
,
18
(
3
), pp.
241
249
.10.1108/13552541211218216
19.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.10.1007/s00170-011-3643-5
20.
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2009
, “
Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability
,”
Mater. Sci. Eng.: A
,
509
(
1–2
), pp.
98
104
.10.1016/j.msea.2009.01.009
21.
Li
,
J.
,
Wang
,
H. M.
, and
Tang
,
H. B.
,
2012
, “
Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Melting Deposited Ni-Base Superalloy Rene′41
,”
Mater. Sci. Eng.: A
,
550
, pp.
97
102
.10.1016/j.msea.2012.04.037
22.
Murr
,
L. E.
,
Martinez
,
E.
,
Amato
,
K. N.
,
Gaytan
,
S. M.
,
Hernandez
,
J.
,
Ramirez
,
D. A.
,
Shindo
,
P. W.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2012
, “
Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science
,”
J. Mater. Res. Technol.
,
1
(
1
), pp.
42
54
.10.1016/S2238-7854(12)70009-1
23.
Wei
,
H. L.
,
Mazumder
,
J.
, and
DebRoy
,
T.
,
2015
, “
Evolution of Solidification Texture During Additive Manufacturing
,”
Sci. Rep.
,
5
(
1
), p.
16446
.10.1038/srep16446
24.
Brune
,
T.
,
Schueckler
,
P.
,
Krämer
,
K. M.
,
Kontermann
,
C.
, and
Oechsner
,
M.
,
2020
, “
Mechanische Kurz- Und Langzeiteigenschaften Von Additiv Hergestellten Bauteilen Für Den Hochtemperatureinsatz Am Beispiel Der Legierung IN718
,” 43. Vortragsveranstaltung Zum Langzeitverhalten Warmfester Stähle Und Hochtemperaturwerkstoffe, Düsseldorf, Germany.
25.
Mohsin Raza
,
M.
, and
Lo
,
Y.-L.
,
2021
, “
Experimental Investigation Into Microstructure, Mechanical Properties, and Cracking Mechanism of IN713 LC Processed by Laser Powder Bed Fusion
,”
Mater. Sci. Eng.: A
,
819
(
12
), p.
141527
.10.1016/j.msea.2021.141527
26.
Bridges
,
A.
,
Shingledecker
,
J.
,
Clark
,
J.
, and
Crudden
,
D.
,
2023
, “
Creep Analysis and Microstructural Evaluation of a Novel Additively Manufactured Nickel-Base Superalloy (ABD®-900AM)
,”
ASME J. Eng. Gas Turbines Power
,
145
(
6
), p.
061005
.10.1115/1.4056097
27.
Bridges
,
A.
,
Shingledecker
,
J.
,
Torkaman
,
A.
, and
Houck
,
L.
,
2020
, “
Metallurgical Evaluation of an Additively Manufactured Nickel-Base Superalloy for Gas Turbine Guide Vanes
,”
ASME
Paper No. GT2020-14808.10.1115/GT2020-14808
28.
Behrouzghaemi
,
S.
, and
Mitchell
,
R. J.
,
2008
, “
Morphological Changes of γ′ Precipitates in Superalloy IN738LC at Various Cooling Rates
,”
Mater. Sci. Eng.: A
,
498
(
1–2
), pp.
266
271
.10.1016/j.msea.2008.07.069
29.
Guzman
,
I.
,
Granda
,
E.
,
Mendez
,
R.
,
Lopez
,
G.
,
Acevedo
,
J.
, and
Gonzalez
,
D.
,
2013
, “
Particle Size of Gamma Prime as a Result of Vacuum Heat Treatment of INCONEL 738 Super Alloy
,”
J. Mater. Eng. Perform.
,
22
(
4
), pp.
1143
1148
.10.1007/s11665-012-0385-y
30.
Mallikarjuna
,
H. T.
,
Caley
,
W. F.
, and
Richards
,
N. L.
,
2022
, “
DSC Investigation of Size-Dependent γ ′ Dissolution and Re-Precipitation Kinetics in Ni-Based Superalloy IN738LC
,”
Can. Metall. Q.
,
61
(
1
), pp.
63
76
.10.1080/00084433.2021.2016349
31.
Rickenbacher
,
L.
,
Etter
,
T.
,
Hövel
,
S.
, and
Wegener
,
K.
,
2013
, “
High Temperature Material Properties of IN738LC Processed by Selective Laser Melting (SLM) Technology
,”
Rapid Prototyping J.
,
19
(
4
), pp.
282
290
.10.1108/13552541311323281
32.
Sanchez
,
S.
,
Smith
,
P.
,
Xu
,
Z.
,
Gaspard
,
G.
,
Hyde
,
C. J.
,
Wits
,
W. W.
,
Ashcroft
,
I. A.
,
Chen
,
H.
, and
Clare
,
A. T.
,
2021
, “
Powder Bed Fusion of Nickel-Based Superalloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
165
, p.
103729
.10.1016/j.ijmachtools.2021.103729
33.
Kunze
,
K.
,
Etter
,
T.
,
Grässlin
,
J.
, and
Shklover
,
V.
,
2015
, “
Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM)
,”
Mater. Sci. Eng.: A
,
620
, pp.
213
222
.10.1016/j.msea.2014.10.003
34.
Kuo
,
Y.-L.
,
Horikawa
,
S.
, and
Kakehi
,
K.
,
2017
, “
Effects of Build Direction and Heat Treatment on Creep Properties of Ni-Base Superalloy Built Up by Additive Manufacturing
,”
Scr. Mater.
,
129
, pp.
74
78
.10.1016/j.scriptamat.2016.10.035
35.
ASTM B213 - 13
, 2017, “
Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel
,” ASTM International, West Conshohocken, PA.10.1520/B0213-13
36.
Messé
,
O.
,
Muñoz-Moreno
,
R.
,
Illston
,
T.
,
Baker
,
S.
, and
Stone
,
H. J.
,
2018
, “
Metastable Carbides and Their Impact on Recrystallisation in IN738LC Processed by Selective Laser Melting
,”
Addit. Manuf.
,
22
, pp.
394
404
.10.1016/j.addma.2018.05.030
37.
Porter
,
D. A.
, and
Easterling
,
K. E.
,
1997
,
Phase Transformations in Metals and Alloys
, 2nd ed.,
Chapman & Hall
,
London, UK, Weinheim, Germany
.
38.
Sanchez
,
S.
,
Hyde
,
C. J.
,
Ashcroft
,
I. A.
,
G.a
,
R.
, and
Clare
,
A. T.
,
2021
, “
Multi-Laser Scan Strategies for Enhancing Creep Performance in LPBF
,”
Addit. Manuf.
,
41
(
11
), p.
101948
.10.1016/j.addma.2021.101948
39.
Kou
,
S.
,
2021
, “
Predicting Susceptibility to Solidification Cracking and Liquation Cracking by CALPHAD
,”
Metals
,
11
(
9
), p.
1442
.10.3390/met11091442
40.
Altenbach
,
H.
, and
Öchsner
,
A.
, eds.,
2020
,
Encyclopedia of Continuum Mechanics
,
Springer
,
Berlin, Heidelberg
.
41.
Cottrell
,
A.
,
2019
,
An Introduction to Metallurgy
,
CRC Press
,
London, UK
.
You do not currently have access to this content.