Abstract

Lean premixed (LPM) combustion is very effective at mitigating emissions but is vulnerable to strong thermoacoustic instabilities. A porous insert in the shape of an annular ring placed at the dump plane of the combustor has been proven to be an effective passive technique for mitigating these instabilities across a wide range of operating conditions. However, it is unclear if the change results from the insert geometry or porosity of the insert. In this study, swirl-stabilized LPM combustion is investigated for three configurations—without any insert, with a porous insert, and with a geometrically similar solid insert. Acoustics, flow, and heat release rate behavior of the three test geometries are investigated using diagnostics including dynamic pressure and acoustic probes, particle image velocimetry (PIV), and OH* chemiluminescence (OH*CL) imaging. Synchronized measurements at a fixed equivalence ratio were acquired at 40 kHz using sound probes and at 3.5 kHz using PIV and OH*CL. Results include time-series and spectral measurements of pressure, velocity, and OH*CL, and mode analysis by proper orthogonal decomposition (POD). In addition, the dynamics of the instability are investigated by high-resolution phase reconstructions of velocity and OH*CL data using a novel implementation of POD introduced in this work. Results show two different instability modes: a longitudinal instability for the solid insert case and a helical, precessing vortex driven instability for the no insert case. In both cases, the flow field and heat release rate oscillations are coupled to produce the instability. No such coupling or oscillations is observed for the porous insert case. These results ascertain the unique capabilities of the porous insert in protecting against instability from different, simultaneous driving mechanisms and demonstrate that the insert porosity and flow dynamics associated with it are the primary mitigating factors.

References

1.
Lieuwen
,
T.
,
2021
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Renard
,
P. H.
,
Thevenin
,
D.
,
Rolon
,
J. C.
, and
Candel
,
S.
,
2000
, “
Dynamics of Flame/Vortex Interactions
,”
Prog. Energy Combust. Sci.
,
26
(
3
), pp.
225
282
.10.1016/S0360-1285(00)00002-2
3.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
4.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
5.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
,
Dover Publications
,
New York
.
6.
Zhang
,
B.
,
Shahsavari
,
M.
,
Rao
,
Z.
,
Yang
,
S.
, and
Wang
,
B.
,
2019
, “
Contributions of Hydrodynamic Features of a Swirling Flow to Thermoacoustic Instabilities in a Lean Premixed Swirl Stabilized Combustor
,”
Phys. Fluids
,
31
(
7
), p.
075106
.10.1063/1.5108856
7.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards
,
Philadelphia, PA
.
8.
Schadow
,
K. C.
,
Gutmark
,
E.
,
Wilson
,
K. J.
, and
Smith
,
R. A.
,
1990
, “
Multistep Dump Combustor Design to Reduce Combustion Instabilities
,”
J. Propul. Power
,
6
(
4
), pp.
407
411
.10.2514/3.25450
9.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
10.
Kashinath
,
K.
,
Hemchandra
,
S.
, and
Juniper
,
M. P.
,
2013
, “
Nonlinear Thermoacoustics of Ducted Premixed Flames: The Influence of Perturbation Convection Speed
,”
Combust. Flame
,
160
(
12
), pp.
2856
2865
.10.1016/j.combustflame.2013.06.019
11.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Recirculation Zone Dynamics of a Transversely Excited Swirl Flow and Flame
,”
Phys. Fluids
,
24
(
7
), pp.
2893
2900
.10.1063/1.4731300
12.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow–Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.10.1016/j.combustflame.2010.07.011
13.
Sirignano
,
W. A.
,
2015
, “
Driving Mechanisms for Combustion Instability
,”
Combust. Sci. Technol.
,
187
(
1–2
), pp.
162
205
.10.1080/00102202.2014.973801
14.
Gejji
,
R. M.
,
Huang
,
C.
,
Fugger
,
C.
,
Yoon
,
C.
, and
Anderson
,
W.
,
2019
, “
Parametric Investigation of Combustion Instabilities in a Single-Element Lean Direct Injection Combustor
,”
Int. J. Spray Combust. Dyn.
,
11
, p.
1756827718785851
.10.1177/1756827718785851
15.
Huang
,
C.
,
Gejji
,
R.
,
Anderson
,
W.
,
Yoon
,
C.
, and
Sankaran
,
V.
,
2020
, “
Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
192
(
12
), pp.
2371
2398
.10.1080/00102202.2019.1646732
16.
Buschhagen
,
T.
,
Gejji
,
R.
,
Philo
,
J.
,
Tran
,
L.
,
Bilbao
,
J. E. P.
, and
Slabaugh
,
C. D.
,
2018
, “
Experimental Investigation of Self-Excited Combustion Instabilities in a Lean, Premixed, Gas Turbine Combustor at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111503
.10.1115/1.4039760
17.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust. Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
18.
Moon
,
K.
,
Choi
,
Y.
, and
Kim
,
K. T.
,
2022
, “
Experimental Investigation of Lean-Premixed Hydrogen Combustion Instabilities in a Can-Annular Combustion System
,”
Combust. Flame
,
235
, p.
111697
.10.1016/j.combustflame.2021.111697
19.
Moon
,
K.
,
Jegal
,
H.
,
Yoon
,
C.
, and
Kim
,
K. T.
,
2020
, “
Cross-Talk-Interaction-Induced Combustion Instabilities in a Can-Annular Lean-Premixed Combustor Configuration
,”
Combust. Flame
,
220
(
5
), pp.
178
188
.10.1016/j.combustflame.2020.06.041
20.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
21.
Agostinelli
,
P. W.
,
Laera
,
D.
,
Chterev
,
I.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2022
, “
On the Impact of H2-Enrichment on Flame Structure and Combustion Dynamics of a Lean Partially-Premixed Turbulent Swirling Flame
,”
Combust. Flame
,
241
, p.
112120
.10.1016/j.combustflame.2022.112120
22.
Frezzotti
,
M. L.
,
Nasuti
,
F.
,
Huang
,
C.
,
Merkle
,
C. L.
, and
Anderson
,
W. E.
,
2018
, “
Quasi-1D Modeling of Heat Release for the Study of Longitudinal Combustion Instability
,”
Aerosp. Sci. Technol.
,
75
, pp.
261
270
.10.1016/j.ast.2018.02.001
23.
Kraus
,
C.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2018
, “
Coupling Heat Transfer and Large Eddy Simulation for Combustion Instability Prediction in a Swirl Burner
,”
Combust. Flame
,
191
, pp.
239
251
.10.1016/j.combustflame.2018.01.007
24.
Zhao
,
D.
,
Lu
,
Z.
,
Zhao
,
H.
,
Li
,
X. Y.
,
Wang
,
B.
, and
Liu
,
P.
,
2018
, “
A Review of Active Control Approaches in Stabilizing Combustion Systems in Aerospace Industry
,”
Prog. Aerosp. Sci.
,
97
, pp.
35
60
.10.1016/j.paerosci.2018.01.002
25.
Zhou
,
H.
,
Tao
,
C.
,
Liu
,
Z.
,
Meng
,
S.
, and
Cen
,
K.
,
2020
, “
Optimal Control of Turbulent Premixed Combustion Instability With Annular Micropore Air Jets
,”
Aerosp. Sci. Technol.
,
98
, p.
105650
.10.1016/j.ast.2019.105650
26.
Guan
,
Y.
,
He
,
W.
,
Murugesan
,
M.
,
Li
,
Q.
,
Liu
,
P.
, and
Li
,
L. K. P.
,
2019
, “
Control of Self-Excited Thermoacoustic Oscillations Using Transient Forcing, Hysteresis and Mode Switching
,”
Combust. Flame
,
202
, pp.
262
275
.10.1016/j.combustflame.2019.01.013
27.
Houston
,
B.
,
Wang
,
J.
,
Qin
,
Q.
, and
Rubini
,
P.
,
2015
, “
Experimental and Numerical Investigation of Helmholtz Resonators and Perforated Liners as Attenuation Devices in Industrial Gas Turbine Combustors
,”
Fuel
,
151
, pp.
31
39
.10.1016/j.fuel.2014.12.001
28.
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Stabilization of Acoustic Modes Using Helmholtz and Quarter-Wave Resonators Tuned at Exceptional Points
,”
J. Sound Vib.
,
445
, pp.
288
307
.10.1016/j.jsv.2018.12.011
29.
Jones
,
C. M.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
1999
, “
Closed-Loop Active Control of Combustion Instabilities Using Subharmonic Secondary Fuel Injection
,”
J. Propul. Power
,
15
(
4
), pp.
584
590
.10.2514/2.5467
30.
Agrawal
,
A. K.
, and
Vijaykant
,
S.
,
2012
, “
Passive Noise Attenuation System
,” U.S. Patent No. 8,109,362.
31.
Marbach
,
T. L.
, and
Agrawal
,
A. K.
,
2005
, “
Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
307
313
.10.1115/1.1789516
32.
Sequera
,
D.
, and
Agrawal
,
A. K.
,
2009
, “
Numerical Simulations of Swirl-Stabilized Combustion Coupled With Porous Inert Medium
,”
Proceedings of the 6th U.S. National Combustion Meeting
, Ann Arbor, MI, May 17–20, Paper No.
11C3
.10.5772/50386
33.
Zimont
,
V. L.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
179
186
.10.1016/S0894-1777(99)00069-2
34.
Williams
,
L.
, and
Agrawal
,
A.
,
2012
, “
Acoustic Effects of Porous Inert Media on Lean Premixed Combustion at Elevated Pressures
,”
AIAA
Paper No. 2012-0207.10.2514/6.2012-0207
35.
Williams
,
L. J.
,
Meadows
,
J.
, and
Agrawal
,
A. K.
,
2016
, “
Passive Control of Thermoacoustic Instabilities in Swirl-Stabilized Combustion at Elevated Pressures
,”
Int. J. Spray Combust. Dyn.
,
8
(
3
), pp.
173
182
.10.1177/1756827716642193
36.
Meadows
,
J. W.
, and
Agrawal
,
A. K.
,
2015
, “
Porous Inserts for Passive Control of Noise and Thermo-Acoustic Instabilities in LDI Combustion
,”
Combust. Sci. Technol.
,
187
(
7
), pp.
1021
1035
.10.1080/00102202.2014.993031
37.
Meadows
,
J.
, and
Agrawal
,
A. K.
,
2015
, “
Time-Resolved Particle Image Velocimetry Measurements of Nonreacting Flow Field in a Swirl-Stabilized Combustor Without and With Porous Inserts for Acoustic Control
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041501
.10.1115/1.4028381
38.
Meadows
,
J.
, and
Agrawal
,
A. K.
,
2015
, “
Time-Resolved PIV of Lean Premixed Combustion Without and With Porous Inert Media for Acoustic Control
,”
Combust. Flame
,
162
(
4
), pp.
1063
1077
.10.1016/j.combustflame.2014.09.028
39.
Allen
,
J.
,
Fisher
,
B. T.
, and
Agrawal
,
A. K.
,
2016
, “
Effect of Porous Insert on Flame Dynamics in a Lean Premixed Swirl-Stabilized Combustor Using Planar Laser-Induced Fluorescence
,”
AIAA
Paper No. 2016-0242.10.2514/6.2016-0242
40.
Allen
,
J. C.
,
2018
, “
Flame Diagnostics of Swirl Stabilized Combustion Without and With Porous Inert Media for Passive Mitigation of Thermo-Acoustic Instabilities
,”
Ph.D. thesis
,
The University of Alabama
, Tuscaloosa, AL.https://ir.ua.edu/items/6874c2fb-dae5-4140-8900-d976cc2fe813
41.
Dowd
,
C.
, and
Meadows
,
J.
,
2021
, “
The Effects of Ring-Shaped Porous Inert Media on Equivalence Ratio Oscillations in a Self-Excited Thermoacoustic Instability
,”
Int. J. Spray Combust. Dyn.
,
13
(
1–2
), pp.
3
19
.10.1177/1756827721991776
42.
Dowd
,
C.
, and
Meadows
,
J.
,
2022
, “
Dynamics of Thermoacoustic Oscillations in Swirl Stabilized Combustor Without and With Porous Inert Media
,”
J. Combust.
,
2022
, pp.
1
21
.10.1155/2022/5440457
43.
Kim
,
Y. J.
,
Lee
,
D. K.
, and
Kim
,
Y.
,
2018
, “
Experimental Study on Combustion Instability and Attenuation Characteristics in the Lab-Scale Gas Turbine Combustor With a Sponge-Like Porous Medium
,”
J. Mech. Sci. Technol.
,
32
(
4
), pp.
1879
1887
.10.1007/s12206-018-0344-0
44.
Ahmed
,
M.
M., and
Birouk
,
M.
,
2021
, “
Acoustic Dampers Effects on the Characteristics of Confined Swirling Partially Premixed Methane Flames
,”
Flow, Turbul. Combust.
,
106
(
1
), pp.
185
206
.10.1007/s10494-020-00194-2
45.
Borsuk
,
A.
,
Williams
,
J.
,
Meadows
,
J.
, and
Agrawal
,
A. K.
,
2015
, “
Swirler Effects on Passive Control of Combustion Noise and Instability in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041504
.10.1115/1.4028613
46.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Disturbance Field Characteristics of a Transversely Excited Burner
,”
Combust. Sci. Technol.
,
183
(
5
), pp.
427
443
.10.1080/00102202.2010.529478
47.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.10.1016/j.combustflame.2013.04.005
48.
Arndt
,
C. M.
,
Stöhr
,
M.
,
Severin
,
M. J.
,
Dem
,
C.
, and
Meier
,
W.
,
2017
, “
Influence of Air Staging on the Dynamics of a Precessing Vortex Core in a Dual Swirl Gas Turbine Model Combustor
,”
AIAA
Paper No. 2017-4683.10.2514/6.2017-4683
49.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
90
(
3–4
), pp.
609
618
.10.1007/s00340-007-2928-8
50.
Foley
,
C.
,
Chterev
,
I.
,
Noble
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Shear Layer Flame Stabilization Sensitivities in a Swirling Flow
,”
Int. J. Spray Combust. Dyn.
,
9
(
1
), pp.
3
18
.10.1177/1756827716653426
51.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Phase-Averaging Methods for the Natural Flowfield of a Fluidic Oscillator
,”
AIAA J.
,
53
(
8
), pp.
2359
2368
.10.2514/1.J053717
You do not currently have access to this content.