Abstract

Robust methods to predict heat transfer are vital to accurately control the blade-tip clearance in compressors and the radial growth of the disks to which these blades are attached. Fundamentally, the flow in the cavity between the co-rotating disks is a conjugate problem: the temperature gradient across this cavity drives large-scale buoyant structures in the core that rotate asynchronously to the disks, which in turn governs the heat transfer and temperature distributions in the disks. The practical engine designer requires expedient computational methods and low-order modeling. A conjugate heat transfer (CHT) methodology that can be used as a predictive tool is introduced here. Most simulations for rotating cavities only consider the fluid domain in isolation and typically require known disk temperature distributions as the boundary condition for the solution. This paper presents a novel coupling strategy for the conjugate problem, where unsteady Reynolds averaged Navier–Stokes (URANS) simulations for the fluid are combined with a series of steady simulations for the solid domain in an iterative approach. This strategy overcomes the limitations due to the difference in thermal inertia between fluid and solid; the method retains the unsteady flow features but allows a prediction of the disk temperature distributions, rather than using them as a boundary condition. This approach has been validated on the fundamental flow configuration of a closed co-rotating cavity. Metal temperatures and heat transfer correlations predicted by the simulation are compared to those measured experimentally for a range of engine-relevant conditions.

References

1.
Jackson
,
R. W.
, Tang, H., Scobie, J. A., Pountney, O. J., Sangan, C. M., Owen, J., Michael., and Lock, G. D.,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.10.1115/1.4050631
2.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
3.
Tritton
,
D. J.
, 1988,
Physical Fluid Dynamics
,
Springer Science & Business Media
,
New York
.
4.
Tang
,
H.
, and
Owen
,
J. M.
,
2018
, “
Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032605
.10.1115/1.4037926
5.
Tang
,
H.
, and
Owen
,
J. M.
,
2023
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,”
ASME J. Turbomach.
,
145
(
1
), p.
011005
.10.1115/1.4055449
6.
Owen
,
J. M.
,
Tang
,
H.
, and
Lock
,
G. D.
,
2018
, “
Buoyancy-Induced Heat Transfer Inside Compressor Rotors: Overview of Theoretical Models
,”
Aerospace
,
5
(
1
), p.
32
.10.3390/aerospace5010032
7.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021020
.10.1115/1.4041113
8.
Pitz
,
D. B.
, and
Wolf
,
W. R.
,
2022
, “
Coriolis Force Effects on Radial Convection in a Cylindrical Annulus
,”
Int. J. Heat Mass Transfer
,
189
, p.
122650
.10.1016/j.ijheatmasstransfer.2022.122650
9.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2020
, “
Simulations of Compressibility Effects in Centrifugal Buoyancy-Induced Flow in a Closed Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
85
, p.
108656
.10.1016/j.ijheatfluidflow.2020.108656
10.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.10.1115/1.2835635
11.
Puttock-Brown
,
M. R.
,
Rose
,
M. G.
, and
Long
,
C. A.
,
2017
, “
Experimental and Computational Investigation of Rayleigh-Bénard Flow in the Rotating Cavities of a Core Compressor
,”
ASME
Paper No. GT2017-64884.10.1115/GT2017-64884
12.
Puttock-Brown
,
M. R.
, and
Rose
,
M. G.
,
2018
, “
Formation and Evolution of Rayleigh-Bénard Streaks in Rotating Cavities
,”
ASME
Paper No. GT2018-75497.10.1115/GT2018-75497
13.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.10.1115/1.4050951
14.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,”
ASME
Paper No. GT2013-95768.10.1115/GT2013-95768
15.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.10.1115/1.4052649
16.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.10.1115/1.4049100
17.
Sun
,
Z.
,
Amirante
,
D.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2016
, “
Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032505
.10.1115/1.4031387
18.
Amirante
,
D.
,
Adami
,
P.
, and
Hills
,
N. J.
,
2021
, “
A Multifidelity Aero-Thermal Design Approach for Secondary Air Systems
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031012
.10.1115/1.4049406
19.
Tian
,
S.
, and
Zhu
,
Y.
,
2012
, “
Disk Heat Transfer Analysis in a Heated Rotating Cavity With an Axial Throughflow
,”
ASME
Paper No. GT2012-69185.10.1115/GT2012-69185
20.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
ASME
Paper No. 2000-GT-0280.10.1115/2000-GT-0280
21.
He
,
L.
,
2010
, “
Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity
,”
ASME J. Turbomach.
,
133
(
2
), p.
021018
.10.1115/1.4000551
22.
He
,
L.
,
2019
, “
Closely Coupled Fluid-Solid Interface Method With Moving-Average for LES Based Conjugate Heat Transfer Solution
,”
Int. J. Heat Fluid Flow
,
79
, p.
108440
.10.1016/j.ijheatfluidflow.2019.108440
23.
Hickling
,
T.
, and
He
,
L.
,
2022
, “
LES-CHT for a Rotating Cavity With Axial Throughflow
,”
ASME J. Turbomach
,
145
(
6
), p.
061006
.10.1115/1.4056091
24.
Abbassi
,
M.
,
Lahaye
,
D.
, and
Vuik
,
K.
,
2021
, “
Modelling Turbulent Combustion Coupled With Conjugate Heat Transfer in OpenFOAM
,”
Numerical Mathematics and Advanced Applications ENUMATH 2019
,
Springer
,
Berlin
, pp.
1137
1145
.
25.
Gao
,
F.
,
Pitz
,
D. B.
, and
Chew
,
J. W.
,
2020
, “
Numerical Investigation of Buoyancy-Induced Flow in a Sealed Rapidly Rotating Disc Cavity
,”
Int. J. Heat Mass Transfer
,
147
, p.
118860
.10.1016/j.ijheatmasstransfer.2019.118860
26.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
27.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Turbomach.
,
143
(
4
), p.
041030
.10.1115/1.4048601
28.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1988
,
Flow and Heat Transfer in Rotating Disc Systems
, Vol.
1
, Rotor-Stator Systems.
Research Studies Press
,
Taunton, John Wiley, New York
.
29.
Nicholas
,
T. E. W.
,
Pernak
,
M. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2023
, “
Transient Heat Transfer and Temperatures in Closed Compressor Rotors
,”
Appl. Therm. Eng.
,
230
, p.
120759
.10.1016/j.applthermaleng.2023.120759
30.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
, Vol.
895
,
Hermosa Publishing
,
Albuquerque, NM
.
31.
Lock
,
G. D.
,
Jackson
,
R. W.
,
Pernak
,
M.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2023
, “
Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors
,”
ASME J. Turbomach.
,
145
(
1
), p.
011008
.10.1115/1.4055448
32.
Pernak
,
M. J.
,
Nicholas
,
T.
,
Williams
,
J. T.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2023
, “
Experimental Investigation of Transient Flow Phenomena in Rotating Compressor Cavities
,”
ASME J. Turbomach.
, 145(12), p.
121005
.10.1115/1.4063507
33.
Gao
,
F.
, and
Chew
,
J. W.
,
2021
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071010
.10.1115/1.4050366
You do not currently have access to this content.