Abstract

Bladed disks are critical parts of aeronautic turbojet engines requiring numerous dynamic analysis tests to fully achieve their design process. This work presents subspace state-space identification techniques for estimation of modal parameters of bladed disks using realistic although numerically generated test case data. Indeed, modal testing of bladed disks can exhibit high modal density leading to modal estimation issues. This study focuses on subspace state-space identification framework as it is an efficient way to process vector valued time series and thus to estimate modal parameters in a context of high modal density. In order to evaluate the techniques of interest, a versatile modal model has been specifically implemented to simulate data representative of full scale rotating aeronautic fan modal tests. This model is easily adjustable allowing to evaluate the identification methods in a more or less severe estimation context. The performance of the investigated methods is discussed and compared with the prescribed parameters of the model. Moreover, different techniques to estimate the order of the associated state-space model are reviewed and tested over several simulated configurations. Finally, a method to evaluate the uncertainties over the model parameters using covariance of estimator results and pseudospectrum computation is proposed and discussed over the investigated test cases.

References

1.
Carassale
,
L.
,
Guida
,
R.
, and
Marrè-Brunenghi
,
M.
,
2023
, “
Modal Identification of Bladed Disks by Time–Frequency Analysis of the Nonsynchronous Response
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021020
.10.1115/1.4055684
2.
Jorajuria
,
C.
,
Gibert
,
C.
,
Thouverez
,
F.
, and
Esteves
,
C.
,
2022
, “
Experimental Modal Analysis of a Full-Scale Rotating Fan
,”
ASME
Paper No. GT2022-82540.10.1115/GT2022-82540
3.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
4.
Katayama
,
T.
,
2005
,
Subspace Methods for System Identification, Communications and Control Engineering
,
Springer
,
London, UK
.10.1007/1-84628-158-x
5.
Verhaegen
,
M.
,
1991
, “
A Novel Non-Iterative MIMO State Space Model Identification Technique
,”
IFAC Proc. Vol.
,
24
(
3
), pp.
749
754
.10.1016/S1474-6670(17)52439-8
6.
Verhaegen
,
M.
, and
Dewilde
,
P.
,
1992
, “
Subspace Model Identification, Part 1. The Ouput-Error State-Space Model Identification Class of Algorithms
,”
Int. J. Control
,
56
(
5
), pp.
1211
1241
.10.1080/00207179208934363
7.
Verhaegen
,
M.
, and
Dewilde
,
P.
,
1992
, “
Subspace Model Identification, Part 2. Analysis of the Elementary Output-Error State-Space Model Identification Algorithm
,”
Int. J. Control
,
56
(
5
), pp.
1211
1241
.10.1080/00207179208934364
8.
Verhaegen
,
M.
,
1993
, “
Subspace Model Identification, Part 3. Analysis of the Ordinary Output-Error State-Space Model Identification Algorithm
,”
Int. J. Control
,
58
(
3
), pp.
555
586
.10.1080/00207179308923017
9.
Verhaegen
,
M.
,
1994
, “
Identification of the Deterministic Part of MIMO State Space Models Given in Innovations Form From Input-Output Data
,”
Automatica
,
30
(
1
), pp.
61
74
.10.1016/0005-1098(94)90229-1
10.
Van Overschee
,
P.
, and
de Moor
,
B.
,
1993
, “
N4SID: Numerical Algorithms for State Space Subspace System Identification
,”
IFAC Proc. Vol.
,
26
(
2
), pp.
55
58
.10.1016/S1474-6670(17)48221-8
11.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1994
, “
N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems
,”
Automatica
,
30
(
1
), pp.
75
93
.10.1016/0005-1098(94)90230-5
12.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1995
, “
A Unifying Theorem for Three Subspace System Identification Algorithms
,”
Automatica
,
31
(
12
), pp.
1853
1864
.10.1016/0005-1098(95)00072-0
13.
Larimore
,
W. E.
,
1990
, “
Canonical Variate Analysis in Identification, Filtering, and Adaptive Control
,”
29th IEEE Conference on Decision and Control
,
IEEE
,
Honolulu, HI
, Dec. 5–7, pp.
596
604
.10.1109/cdc.1990.203665
14.
Akaike
,
H.
,
1974
, “
Stochastic Theory of Minimal Realization
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
667
674
.10.1109/TAC.1974.1100707
15.
Akaike
,
H.
,
1975
, “
Markovian Representation of Stochastic Processes by Canonical Variables
,”
SIAM J. Control
,
13
(
1
), pp.
162
173
.10.1137/0313010
16.
Akaike
,
H.
,
1976
, “
Canonical Correlation Analysis of Time Series and the Use of an Information Criterion
,”
Math. Sci. Eng.
,
126
, pp.
27
96
.10.1016/S0076-5392(08)60869-3
17.
Larimore
,
W. E.
,
1983
, “
Predictive Inference, Sufficiency, Entropy and an Asymptotic Likelihood Principle
,”
Biometrika
,
70
(
1
), pp.
175
181
.10.1093/biomet/70.1.175
18.
Akaike
,
H.
,
1973
, “
Information Theory as an Extension of the Maximum Likelihood Principle
,”
Second International Symposium on Information Theory
,
Akademia Kiadom,
Tsahkadsor, Armenia, USSR, Sept. 7–8, pp.
276
281
, 610–624.10.1007/978-1-4612-0919-5_38
19.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
20.
Kalman
,
R. E.
, and
Bucy
,
R. S.
,
1961
, “
New Results in Linear Filtering and Prediction Theory
,”
J. Basic Eng.
,
83
(
1
), pp.
95
108
.10.1115/1.3658902
21.
Trefethen
,
L. N.
,
1991
, “
Pseudospectra of Matrices
,”
Numerical Analysis 1991
, Griffiths and Watson, Longman Scientific & Technical, Harlow, Essex, UK, pp.
234
266
.https://scholar.google.com/scholar?cluster=11754275284194743853
22.
Embree
,
M.
, and
Trefethen
,
L. N.
,
2005
,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
,
Princeton University Press
,
Princeton, NJ
.10.1515/9780691213101
23.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
,
et al
.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
24.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
,
SIAM
,
Philadelphia, PA
.10.1137/1.9780898719628
25.
Carassale
,
L.
,
Marrè-Brunenghi
,
M.
, and
Patrone
,
S.
,
2018
, “
Wavelet-Based Identification of Rotor Blades in Passage-Through-Resonance Tests
,”
Mech. Syst. Signal Process.
,
98
, pp.
124
138
.10.1016/j.ymssp.2017.04.023
26.
Mallat
,
S.
,
1999
,
A Wavelet Tour of Signal Processing
,
Elsevier
,
Amsterdam, The Netherlands
.
You do not currently have access to this content.