Abstract

The current energy scenario requires that gas turbines (GTs) operate at their maximum efficiency and highest reliability. Trip is one of the most disrupting events that reduces GT availability and increases maintenance costs. To tackle the challenge of GT trip prediction, this paper presents a methodology that has the goal of monitoring the early warnings raised during GT operation and trigger an alert to avoid trip occurrence. The methodology makes use of an auto-encoder (prediction model) and a three-stage criterion (detection procedure). The auto-encoder is first trained to reconstruct safe operation data and subsequently tested on new data collected before trip occurrence. The trip detection criterion checks whether the individually tested data points should be classified as normal or anomalous (first stage), provides a warning if the anomaly score over a given time frame exceeds a threshold (second stage), and, finally, combines consecutive warnings to trigger a trip alert in advance (third stage). The methodology is applied to a real-world case study composed of a collection of trips, of which the causes may be different, gathered from various GTs in operation during several years. Historical observations of gas path measurements taken during three days of GT operation before trip occurrence are employed for the analysis. Once optimally tuned, the methodology provides a trip alert with a reliability equal to 75% at least 10 h in advance before trip occurrence.

References

1.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Abdul Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
2.
Wen
,
Y.
,
Rahman
,
M. F.
,
Xu
,
H.
, and
Tseng
,
T.-L. B.
,
2022
, “
Recent Advances and Trends of Predictive Maintenance From Data-Driven Machine Prognostics Perspective
,”
Measurement
,
187
, p.
110276
.10.1016/j.measurement.2021.110276
3.
Nguyen
,
K. T. P.
,
Medjaher
,
K.
, and
Tran
,
D. T.
,
2023
, “
A Review of Artificial Intelligence Methods for Engineering Prognostics and Health Management With Implementation Guidelines
,”
Artif. Intell. Rev.
,
56
(
4
), pp.
3659
3709
.10.1007/s10462-022-10260-y
4.
Mancuso
,
A.
,
Compare
,
M.
,
Salo
,
A.
, and
Zio
,
E.
,
2021
, “
Optimal Prognostics and Health Management-Driven Inspection and Maintenance Strategies for Industrial Systems
,”
Reliab. Eng. Syst. Saf.
,
210
, p.
107536
.10.1016/j.ress.2021.107536
5.
Carvalho
,
T. P.
,
Soares
,
F. A.
,
Vita
,
R.
,
Francisco
,
R. D. P.
,
Basto
,
J. P.
, and
Alcalá
,
S. G.
,
2019
, “
A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance
,”
Comput. Ind. Eng.
,
137
, p.
106024
.10.1016/j.cie.2019.106024
6.
Ochella
,
S.
,
Shafiee
,
M.
, and
Dinmohammadi
,
F.
,
2022
, “
Artificial Intelligence in Prognostics and Health Management of Engineering Systems
,”
Eng. Appl. Artif. Intell.
,
108
, p.
104552
.10.1016/j.engappai.2021.104552
7.
Xie
,
J.
,
Sage
,
M.
, and
Zhao
,
Y. F.
,
2023
, “
Feature Selection and Feature Learning in Machine Learning Applications for Gas Turbines: A Review
,”
Eng. Appl. Artif. Intell.
,
117
(
Part A
), p.
105591
.10.1016/j.engappai.2022.105591
8.
Manservigi
,
L.
,
Murray
,
D.
,
de la Iglesia
,
J. A.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Losi
,
E.
, and
Venturini
,
M.
,
2022
, “
Detection of Unit of Measure Inconsistency in Gas Turbine Sensors by Means of Support Vector Machine Classifier
,”
ISA Trans.
,
123
, pp.
323
338
.10.1016/j.isatra.2021.05.034
9.
Manservigi
,
L.
,
Venturini
,
M.
,
Losi
,
E.
,
Bechini
,
G.
, and
Artal de la Iglesia
,
J.
,
2022
, “
Optimal Classifier to Detect Unit of Measure Inconsistency in Gas Turbine Sensors
,”
Machines
,
10
(
4
), p.
228
.10.3390/machines10040228
10.
Zhou
,
D.
,
Zhang
,
H.
, and
Weng
,
S.
,
2015
, “
A New Gas Path Fault Diagnostic Method of Gas Turbine Based on Support Vector Machine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102605
.10.1115/1.4030277
11.
Wang
,
C.
,
Lu
,
N.
,
Cheng
,
Y.
, and
Jiang
,
B.
,
2018
, “
Deep Forest Based Multivariate Classification for Diagnostic Health Monitoring
,” Proceedings of the 2018 Chinese Control and Decision Conference (
CCDC
), Shenyang, China, June 9–11, pp.
6233
6238
.10.1109/CCDC.2018.8408224
12.
Yan
,
W.
, and
Yu
,
L.
,
2015
, “
On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach
,” e-print
arXiv:1908.09238
.10.48550/arXiv.1908.09238
13.
Montazeri-Gh
,
M.
, and
Nekoonam
,
A.
,
2022
, “
Gas Path Component Fault Diagnosis of an Industrial Gas Turbine Under Different Load Condition Using Online Sequential Extreme Learning Machine
,”
Eng. Failure Anal.
,
135
, p.
106115
.10.1016/j.engfailanal.2022.106115
14.
Fink
,
O.
,
Wang
,
Q.
,
Svensén
,
M.
,
Dersin
,
P.
,
Lee
,
W.-J.
, and
Ducoffe
,
M.
,
2020
, “
Potential, Challenges and Future Directions for Deep Learning in Prognostics and Health Management Applications
,”
Eng. Appl. Artif. Intell.
,
92
, p.
103678
.10.1016/j.engappai.2020.103678
15.
Liu
,
D.
,
Zhong
,
S.
,
Lin
,
L.
,
Zhao
,
M.
,
Fu
,
X.
, and
Liu
,
X.
,
2022
, “
Highly Imbalanced Fault Diagnosis of Gas Turbines Via Clustering-Based Downsampling and Deep Siamese Self-Attention Network
,”
Adv. Eng. Inf.
,
54
, p.
101725
.10.1016/j.aei.2022.101725
16.
Liu
,
J.
,
Liu
,
J.
,
Yu
,
D.
,
Kang
,
M.
,
Yan
,
W.
,
Wang
,
Z.
, and
Pecht
,
M. G.
,
2018
, “
Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network
,”
Energies
,
11
(
8
), p.
2149
.10.3390/en11082149
17.
Zhou
,
D.
,
Yao
,
Q.
,
Wu
,
H.
,
Ma
,
S.
, and
Zhang
,
H.
,
2020
, “
Fault Diagnosis of Gas Turbine Based on Partly Interpretable Convolutional Neural Networks
,”
Energy
,
200
, p.
117467
.10.1016/j.energy.2020.117467
18.
Bai
,
M.
,
Yang
,
X.
,
Liu
,
J.
,
Liu
,
J.
, and
Yu
,
D.
,
2021
, “
Convolutional Neural Network-Based Deep Transfer Learning for Fault Detection of Gas Turbine Combustion Chambers
,”
Appl. Energy
,
302
, p.
117509
.10.1016/j.apenergy.2021.117509
19.
Yang
,
X.
,
Bai
,
M.
,
Liu
,
J.
,
Liu
,
J.
, and
Yu
,
D.
,
2021
, “
Gas Path Fault Diagnosis for Gas Turbine Group Based on Deep Transfer Learning
,”
Measurement
,
181
, p.
109631
.10.1016/j.measurement.2021.109631
20.
Zhong
,
S.-S.
,
Fu
,
S.
, and
Lin
,
L.
,
2019
, “
A Novel Gas Turbine Fault Diagnosis Method Based on Transfer Learning With CNN
,”
Measurement
,
137
, pp.
435
453
.10.1016/j.measurement.2019.01.022
21.
Zhao
,
Y.
, and
Wang
,
Y.
,
2021
, “
Remaining Useful Life Prediction for Multi-Sensor Systems Using a Novel End-to-End Deep-Learning Method
,”
Measurement
,
182
, p.
109685
.10.1016/j.measurement.2021.109685
22.
Shah
,
B. S. R.
,
Chadha
,
G. S.
,
Schwung
,
A.
, and
Ding
,
S. X.
,
2021
, “
A Sequence-to-Sequence Approach for Remaining Useful Lifetime Estimation Using Attention-Augmented Bidirectional LSTM
,”
Intell. Syst. Appl.
,
10–11
, p.
200049
.10.1016/j.iswa.2021.200049
23.
Djeddi
,
A. Z.
,
Hafaifa
,
A.
,
Hadroug
,
N.
, and
Iratni
,
A.
,
2022
, “
Gas Turbine Availability Improvement Based on Long Short-Term Memory Networks Using Deep Learning of Their Failures Data Analysis
,”
Process Saf. Environ. Prot.
,
159
, pp.
1
25
.10.1016/j.psep.2021.12.050
24.
Wu
,
H.-S.
,
2016
, “
A Survey of Research on Anomaly Detection for Time Series
,” Proceedings of the 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (
ICCWAMTIP
), Chengdu, China, Dec. 16–18, pp.
426
431
.10.1109/ICCWAMTIP.2016.8079887
25.
Basora
,
L.
,
Olive
,
X.
, and
Dubot
,
T.
,
2019
, “
Recent Advances in Anomaly Detection Methods Applied to Aviation
,”
Aerospace
,
6
(
11
), p.
117
.10.3390/aerospace6110117
26.
Shaukat Dar
,
K.
,
Alam
,
T. M.
,
Luo
,
S.
,
Shabbir
,
S.
,
Hameed
,
I. A.
,
Li
,
J.
,
Abbas
,
S.
, and
Javed
,
U.
,
2021
, “
A Review of Time-Series Anomaly Detection Techniques: A Step to Future Perspectives
,”
Advances in Information and Communication (Advances in Intelligent Systems and Computing)
, Vol.
1363
,
K.
Arai
, ed.,
Springer
,
Cham, Switzerland
.
27.
Bai
,
M.
,
Liu
,
J.
,
Chai
,
J.
,
Zhao
,
X.
, and
Yu
,
D.
,
2020
, “
Anomaly Detection of Gas Turbines Based on Normal Pattern Extraction
,”
Appl. Therm. Eng.
,
166
, p.
114664
.10.1016/j.applthermaleng.2019.114664
28.
Miele
,
E. S.
,
Bonacina
,
F.
, and
Corsini
,
A.
,
2022
, “
Deep Anomaly Detection in Horizontal Axis Wind Turbines Using Graph Convolutional Autoencoders for Multivariate Time Series
,”
Energy AI
,
8
, p.
100145
.10.1016/j.egyai.2022.100145
29.
Yousuf
,
A.
, and
Cheetham
,
W.
,
2012
, “
Case-Based Reasoning for Turbine Trip Diagnostics
,”
Case-Based Reasoning Research and Development (Lecture Notes in Computer Science
, Vol.
7466
),
B. D.
Agudo
and
I.
Watson
, eds.,
Springer
,
Berlin, Germany
.
30.
Ravi
,
Y. B.
,
Pandey
,
A.
, and
Jammu
,
V.
,
2010
, “
Prediction of Gas Turbine Trip Due to Electro Hydraulic Control Valve System Failures
,”
ASME
Paper No. GT2010-23228.10.1115/GT2010-23228
31.
Fontes
,
C. H.
, and
Budman
,
H.
,
2017
, “
A Hybrid Clustering Approach for Multivariate Time Series—A Case Study Applied to Failure Analysis in a Gas Turbine
,”
ISA Trans.
,
71
, pp.
513
529
.10.1016/j.isatra.2017.09.004
32.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2023
, “
Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031023
.10.1115/1.4055904
33.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2021
, “
Structured Methodology for Clustering Gas Turbine Transients by Means of Multivariate Time Series
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031014
.10.1115/1.4049503
34.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
, “
Data Selection and Feature Engineering for the Application of Machine Learning to the Prediction of Gas Turbine Trip
,”
ASME
Paper No. GT2021-58914.10.1115/GT2021-58914
35.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2023
, “
Ensemble Learning Approach to the Prediction of Gas Turbine Trip
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021009
.10.1115/1.4055905
36.
Bechini
,
G.
,
Losi
,
E.
,
Manservigi
,
L.
,
Pagliarini
,
G.
,
Sciavicco
,
G.
,
Stan
,
I. E.
, and
Venturini
,
M.
,
2023
, “
Statistical Rule Extraction for Gas Turbine Trip Prediction
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051017
.10.1115/1.4056287
37.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2022
, “
Prediction of Gas Turbine Trip: A Novel Methodology Based on Random Forest Models
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031025
.10.1115/1.4053194
38.
Kieu
,
T.
,
Yang
,
B.
, and
Jensen
,
C. S.
,
2018
, “
Outlier Detection for Multidimensional Time Series Using Deep Neural Networks
,” Proceedings of the 2018 19th IEEE International Conference on Mobile Data Management (
MDM
), Aalborg, Denmark, June 25–28, pp.
125
134
.10.1109/MDM.2018.00029
39.
Thill
,
M.
,
Konen
,
W.
,
Wang
,
H.
, and
Bäck
,
T.
,
2021
, “
Temporal Convolutional Autoencoder for Unsupervised Anomaly Detection in Time Series
,”
Appl. Soft Comput.
,
112
, p.
107751
.10.1016/j.asoc.2021.107751
40.
Ehsani
,
N.
,
Aminifar
,
F.
, and
Mohsenian-Rad
,
H.
,
2022
, “
Convolutional Autoencoder Anomaly Detection and Classification Based on Distribution PMU Measurements
,”
IET Gener. Transm. Distrib.
,
16
(
14
), pp.
2816
2828
.10.1049/gtd2.12424
41.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,” Proceedings of the 27th International Conference on Machine Learning (
ICML-10
), Haifa, Israel, June 21–24, pp.
807
814
.https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
42.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
43.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
, pp.
1929
1958
.http://jmlr.org/papers/v15/srivastava14a.html
44.
Tang
,
L.
, and
Volponi
,
A. J.
,
2018
, “
Intelligent Reasoning for Gas Turbine Fault Isolation and Ambiguity Resolution
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041023
.10.1115/1.4040899
45.
Jin
,
Y.
,
Ying
,
Y.
,
Li
,
J.
, and
Zhou
,
H.
,
2021
, “
Gas Path Fault Diagnosis of Gas Turbine Engine Based on Knowledge Data-Driven Artificial Intelligence Algorithm
,”
IEEE Access
,
9
, pp.
108932
108941
.10.1109/ACCESS.2021.3101647
46.
Kiaee
,
M.
, and
Tousi
,
A. M.
,
2021
, “
Vector-Based Deterioration Index for Gas Turbine Gas-Path Prognostics Modeling Framework
,”
Energy
,
216
, p.
119198
.10.1016/j.energy.2020.119198
47.
Ye
,
L.
, and
Keogh
,
E.
,
2009
, “
Time Series Shapelets: A New Primitive for Data Mining
,”
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, Paris, France, June 28–July 1, pp.
947
956
.https://www.cs.ucr.edu/~eamonn/shaplet.pdf
48.
Wang
,
Z.
,
Yan
,
W.
, and
Oates
,
T.
,
2017
, “
Time Series Classification From Scratch With Deep Neural Networks: A Strong Baseline
,” Proceedings of the 2017 International Joint Conference on Neural Networks (
IJCNN
), Anchorage, AL, May 14–19, pp.
1578
1585
.10.1109/IJCNN.2017.7966039
49.
Liu
,
C.-L.
,
Hsaio
,
W.-H.
, and
Tu
,
Y.-C.
,
2019
, “
Time Series Classification With Multivariate Convolutional Neural Network
,”
IEEE Trans. Ind. Electron.
,
66
(
6
), pp.
4788
4797
.10.1109/TIE.2018.2864702
50.
Liu
,
F. T.
,
Ting
,
K. M.
, and
Zhou
,
Z.
,
2008
, “
Isolation Forest
,”
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
, Pisa, Italy, Dec. 15–19, pp.
413
422
.10.1109/ICDM.2008.17
You do not currently have access to this content.