Abstract

Particle interactions in engines can be complex phenomena leading to degradation of thermal (TBCs) and environmental barrier coatings (EBCs) meant to protect engine components. Ingestion of particles into the engine can lead to recession of coatings due to particle erosion. Similarly, these particles can become molten, adhere to coatings, and result in thermochemical corrosion of coating materials. Erosion testing is often carried out where particles are injected into a gas stream, accelerated within a nozzle, and impinge on samples. Conversely, most molten particle corrosion testing is often done in static furnaces, which does not capture the dynamic nature of deposition. Nevertheless, these damage mechanisms are often tested separately, and no standard exists to test both erosive/corrosive particle interactions with coating materials under relevant turbine operating conditions. Understanding the synergies of particle interactions is crucial in determining operating lifetimes of potential coating materials. Such considerations emphasize the need for realistic approaches in standardizing particle interaction testing in combustion environments. This study outlines efforts at NASA Glenn's Erosion Burner Rig Facility in improving dynamic erosion/corrosion testing methods by assessing the durability of state-of-the-art (SOA) TBC 7 wt % yttria-stabilized zirconia (7YSZ) as a function of particle deposition rate, burner temperature, and particle size. Calibration data to determine particle deposition rate will be presented, and mass and optical profilometry measurements were utilized to estimate mass/volume loss versus deposition per increment of particulate used. Electron microscopy analyses were then carried out to assess coating damage after testing.

References

1.
Perepezko
,
J. H.
,
2009
, “
The Hotter the Engine, the Better
,”
Science
,
326
(
5956
), pp.
1068
1069
.10.1126/science.1179327
2.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.10.1038/nmat4687
3.
Borom
,
M. P.
,
Johnson
,
C. A.
, and
Peluso
,
L. A.
,
1996
, “
Role of Environmental Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
86–87
, pp.
116
126
.10.1016/S0257-8972(96)02994-5
4.
Bruce
,
R. W.
,
1998
, “
Development of 1232 °C (2250 °F) Erosion and Impact Tests for Thermal Barrier Coatings
,”
Tribol. Trans.
,
41
(
4
), pp.
399
410
.10.1080/10402009808983765
5.
Murugan
,
M.
,
Ghoshal
,
A.
,
Barnett
,
B. D.
,
Pepi
,
M.
,
Kerner
,
K. A.
, and
Booth
,
D. T.
,
2015
, “
Blade Surface-Particle Interaction and Multifunctional Coatings for Gas Turbine Engine
,”
AIAA
Paper No. 2015-4193.10.2514/6.2015-4193
6.
Chen
,
W. R.
, and
Zhao
,
L. R.
,
2015
, “
Review—Volcanic Ash and Its Influence on Aircraft Engine Components
,”
Procedia Eng.
,
99
, pp.
795
803
.10.1016/j.proeng.2014.12.604
7.
Poerschke
,
D. L.
,
Jackson
,
R. W.
, and
Levi
,
C. G.
,
2017
, “
Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
297
330
.10.1146/annurev-matsci-010917-105000
8.
Schmitt
,
M. P.
,
Harder
,
B. J.
, and
Wolfe
,
D. E.
,
2016
, “
Process-Structure-Property Relations for the Erosion Durability of Plasma Spray-Physical Vapor Deposition (PS-PVD) Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
297
, pp.
11
18
.10.1016/j.surfcoat.2016.04.029
9.
Presby
,
M. J.
,
Stokes
,
J. L.
, and
Harder
,
B. J.
,
2024
, “
Solid Particle Erosion in Ceramic Matrix Composites and Environmental Barrier Coatings: A Perspective
,”
J. Am. Ceram. Soc.
,
107
(
3
), pp.
1776
1792
.10.1111/jace.19376
10.
Presby
,
M. J.
, and
Harder
,
B. J.
,
2021
, “
Solid Particle Erosion of a Plasma Spray—Physical Vapor Deposition Environmental Barrier Coating in a Combustion Environment
,”
Ceram. Int.
,
47
(
17
), pp.
24403
24411
.10.1016/j.ceramint.2021.05.154
11.
Okita
,
Y.
,
Mizokami
,
Y.
, and
Hasegawa
,
J.
,
2019
, “
Experimental and Numerical Investigation of Environmental Barrier Coated Ceramic Matrix Composite Turbine Airfoil Erosion
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031013
.10.1115/1.4041385
12.
Schmitt
,
M. P.
,
Rai
,
A. K.
,
Bhattacharya
,
R.
,
Zhu
,
D.
, and
Wolfe
,
D. E.
,
2014
, “
Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores
,”
Surf. Coat. Technol.
,
251
, pp.
56
63
.10.1016/j.surfcoat.2014.03.049
13.
Wang
,
M.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2011
, “
Elastodynamic Erosion of Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
94
(
S1
), pp.
160
167
.10.1111/j.1551-2916.2011.04459.x
14.
Cernuschi
,
F.
,
Lorenzoni
,
L.
,
Capelli
,
S.
,
Guardamagna
,
C.
,
Karger
,
M.
,
Vaßen
,
R.
,
von Niessen
,
K.
,
Markocsan
,
N.
,
Menuey
,
J.
, and
Giolli
,
C.
,
2011
, “
Solid Particle Erosion of Thermal Spray and Physical Vapour Deposition Thermal Barrier Coatings
,”
Wear
,
271
(
11–12
), pp.
2909
2918
.10.1016/j.wear.2011.06.013
15.
Cernuschi
,
F.
,
Guardamagna
,
C.
,
Capelli
,
S.
,
Lorenzoni
,
L.
,
Mack
,
D. E.
, and
Moscatelli
,
A.
,
2016
, “
Solid Particle Erosion of Standard and Advanced Thermal Barrier Coatings
,”
Wear
,
348–349
, pp.
43
51
.10.1016/j.wear.2015.10.021
16.
Okita
,
Y.
,
Suzuki
,
M.
,
Yamane
,
T.
,
Hasegawa
,
J.
,
Mizokami
,
Y.
, and
Nakamura
,
T.
,
2022
, “
Effect of Temperature and Velocity on Microparticle Erosion/Deposition Into Environmental-Barrier-Coated CMC for Aeroengines
,”
ASME
Paper No. GT2022-79366.10.1115/GT2022-79366
17.
Nied
,
E. P.
,
Bons
,
J. P.
, and
Lundgreen
,
R. K.
,
2022
, “
Unpacking Inter-Mineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet
,”
ASME
Paper No. GT2022-82304.10.1115/GT2022-82304
18.
Mack
,
D. E.
,
Wobst
,
T.
,
Jarligo
,
M. O. D.
,
Sebold
,
D.
, and
Vaßen
,
R.
,
2017
, “
Lifetime and Failure Modes of Plasma Sprayed Thermal Barrier Coatings in Thermal Gradient Rig Tests With Simultaneous CMAS Injection
,”
Surf. Coat. Technol.
,
324
, pp.
36
47
.10.1016/j.surfcoat.2017.04.071
19.
Clarkson
,
R.
, and
Simpson
,
H.
,
2017
, “
Maximising Airspace Use During Volcanic Eruptions: Matching Engine Durability Against Ash Cloud Occurrence
,” Specialists' Meeting on Impact of Volcanic Ash Clouds on Military Operations, Conference: NATO STO-MP-AVT-272-20, Vilnius, Lithuania, May 15–17, Paper No.
NATO STO AVT-272
.https://www.researchgate.net/publication/317617735_Maximising_Airspace_Use_During_Volcanic_Eruptions_Matching_Engine_Durability_against_Ash_Cloud_Occurrence
20.
Stokes
,
J. L.
,
Harder
,
B. J.
,
Wiesner
,
V. L.
, and
Wolfe
,
D. E.
,
2021
, “
Melting and Crystallization Behavior of CaO-MgO-Al2O3-SiO2 Silicates Relevant to Turbine Engine Applications
,” NASA, Washington, DC, Report No.
NASA/TM-20210020388
.https://ntrs.nasa.gov/citations/20210020388
21.
Stokes
,
J. L.
,
Harder
,
B. J.
,
Wiesner
,
V. L.
, and
Wolfe
,
D. E.
,
2019
, “
High-Temperature Thermochemical Interactions of Molten Silicates With Yb2Si2O7 and Y2Si2O7 Environmental Barrier Coating Materials
,”
J. Eur. Ceram. Soc.
,
39
(
15
), pp.
5059
5067
.10.1016/j.jeurceramsoc.2019.06.051
22.
Krämer
,
S.
,
Yang
,
J.
,
Levi
,
C. G.
, and
Johnson
,
C. A.
,
2006
, “
Thermochemical Interaction of Thermal Barrier Coatings With Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits
,”
J. Am. Ceram. Soc.
,
89
(
10
), pp.
3167
3175
.10.1111/j.1551-2916.2006.01209.x
23.
Song
,
W.
,
Hess
,
K. U.
,
Damby
,
D. E.
,
Wadsworth
,
F. B.
,
Lavallée
,
Y.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2014
, “
Fusion Characteristics of Volcanic Ash Relevant to Aviation Hazards
,”
Geophys. Res. Lett.
,
41
(
7
), pp.
2326
2333
.10.1002/2013GL059182
24.
Watt
,
S. F. L.
,
Pyle
,
D. M.
,
Mather
,
T. A.
,
Martin
,
R. S.
, and
Matthews
,
N. E.
,
2009
, “
Fallout and Distribution of Volcanic Ash Over Argentina Following the May 2008 Explosive Eruption of Chaitén, Chile
,”
J. Geophys. Res. Solid Earth
,
114
(
B4
), pp.
1
11
.10.1029/2008JB006219
25.
Carey
,
S. N.
, and
Sigurdsson
,
H.
,
1982
, “
Influence of Particle Aggregation on Deposition of Distal Tephra From the May 18, 1980, Eruption of Mount St. Helens Volcano
,”
J. Geophys. Res. Solid Earth
,
87
(
B8
), pp.
7061
7072
.10.1029/JB087iB08p07061
26.
Brazier
,
S.
,
Sparks
,
R. S. J.
,
Carey
,
S. N.
,
Sigurdsson
,
H.
, and
Westgate
,
J. A.
,
1983
, “
Bimodal Grain Size Distribution and Secondary Thickening in Air-Fall Ash Layers
,”
Nature
,
301
(
5896
), pp.
115
119
.10.1038/301115a0
27.
Major
,
J. J.
,
Bertin
,
D.
,
Pierson
,
T. C.
,
Amigo
,
Á.
,
Iroumé
,
A.
,
Ulloa
,
H.
, and
Castro
,
J.
,
2016
, “
Extraordinary Sediment Delivery and Rapid Geomorphic Response Following the 2008–2009 Eruption of Chaitén Volcano, Chile
,”
Water Resour. Res.
,
52
(
7
), pp.
5075
5094
.10.1002/2015WR018250
28.
Fox
,
D. S.
,
Miller
,
R. A.
,
Zhu
,
D.
,
Perez
,
M.
,
Cuy
,
M. D.
, and
Robinson
,
R. C.
,
2011
, “
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
,” NASA, Washington, DC, Report No.
NASA/TM-2011-216986
.https://ntrs.nasa.gov/citations/20110008403
29.
Miller
,
R. A.
,
Kuczmarski
,
M. A.
, and
Zhu
,
D.
,
2011
, “
Burner Rig With an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings
,” NASA, Washington, DC, Report No.
NASA/TM-2011-217008
.https://ntrs.nasa.gov/citations/20110013364
30.
Zaleski
,
E. M.
,
Ensslen
,
C.
, and
Levi
,
C. G.
,
2015
, “
Melting and Crystallization of Silicate Systems Relevant to Thermal Barrier Coating Damage
,”
J. Am. Ceram. Soc.
,
98
(
5
), pp.
1642
1649
.10.1111/jace.13478
31.
Presby
,
M. J.
,
2021
, “
High-Temperature Solid Particle Erosion in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121026
.10.1115/1.4051969
32.
Wiederhorn
,
S. M.
, and
Hockey
,
B. J.
,
1983
, “
Effect of Material Parameters on the Erosion Resistance of Brittle Materials
,”
J. Mater. Sci.
,
18
(
3
), pp.
766
780
.10.1007/BF00745575
33.
Ritter
,
J. E.
,
1992
, “
Particle Impact Damage of Engineering Ceramics
,”
Fracture Mechanics of Ceramics
,
R. C.
Brandt
, ed.,
Springer
,
Boston, MA
, pp.
555
578
.
34.
Singh
,
S.
,
Singh
,
D.
,
Singh
,
J. P.
,
Singh
,
R. N.
, and
Routbort
,
J. L.
,
2005
, “
Solid-Particle Erosion of Thin Films Deposited on Ceramics
,”
Advances in Ceramic Coatings and Ceramic-Metal Systems: Ceramic Engineering and Science Proceedings
, Vol.
26
, pp.
190
198
.10.1002/9780470291238.ch23
35.
Shin
,
D.
, and
Hamed
,
A.
,
2018
, “
Influence of Micro-Structure on Erosion Resistance of Plasma Sprayed 7YSZ Thermal Barrier Coating Under Gas Turbine Operating Conditions
,”
Wear
,
396–397
, pp.
34
47
.10.1016/j.wear.2017.11.005
36.
Nicholls
,
J. R.
,
Deakin
,
M. J.
, and
Rickerby
,
D. S.
,
1999
, “
A Comparison Between the Erosion Behaviour of Thermal Spray and Electron Beam Physical Vapour Deposition Thermal Barrier Coatings
,”
Wear
,
233–235
, pp.
352
361
.10.1016/S0043-1648(99)00214-8
37.
Presby
,
M. J.
,
Stokes
,
J. L.
,
Harder
,
B. J.
,
Lee
,
K. N.
, and
Hoffman
,
L. C.
,
2023
, “
High-Temperature Solid Particle Erosion of Environmental and Thermal Barrier Coatings
,”
Coatings
,
13
(
5
), p.
902
.10.3390/coatings13050902
38.
Miller
,
R. A.
, and
Kuczmarski
,
M. A.
,
2015
, “
A CFD-Based Study of the Feasibility of Adapting an Erosion Burner Rig for Examining the Effect of CMAS Deposition/Corrosion on Environmental Barrier Coatings
,” NASA, Washington, DC, Report No.
NASA/TM-2015-218757
.https://ntrs.nasa.gov/api/citations/20150018398/downloads/20150018398.pdf
39.
Kuczmarski
,
M. A.
,
Miller
,
R. A.
, and
Zhu
,
D.
,
2011
, “
CFD-Guided Development of Test Rigs for Studying Erosion and Large-Particle Damage of Thermal Barrier Coatings
,”
Model. Simul. Eng.
,
2011
, epub.https://onlinelibrary.wiley.com/doi/10.1155/2011/837921
40.
Wiesner
,
V. L.
, and
Bansal
,
N. P.
,
2015
, “
Mechanical and Thermal Properties of Calcium–Magnesium Aluminosilicate (CMAS) Glass
,”
J. Eur. Ceram. Soc.
,
35
(
10
), pp.
2907
2914
.10.1016/j.jeurceramsoc.2015.03.032
41.
Krämer
,
S.
,
Yang
,
J.
, and
Levi
,
C. G.
,
2008
, “
Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings With CMAS Melts
,”
J. Am. Ceram. Soc.
,
91
(
2
), pp.
576
583
.10.1111/j.1551-2916.2007.02175.x
42.
Poerschke
,
D. L.
,
Barth
,
T. L.
, and
Levi
,
C. G.
,
2016
, “
Equilibrium Relationships Between Thermal Barrier Oxides and Silicate Melts
,”
Acta Mater.
,
120
, pp.
302
314
.10.1016/j.actamat.2016.08.077
You do not currently have access to this content.