Abstract

Dry low emissions (DLE) systems are well-known to be susceptible to thermoacoustic instabilities. In particular, transverse, spinning modes of high frequency may appear, and lead to severe damage in a matter of seconds. The thermoacoustic response of an engine is usually specific to the combustor geometry, operating conditions and difficult to reproduce at the lab-scale. In this work, details of high frequency dynamics (HFD) observed during the early development phase of a new DLE system are provided, where a multipeaked spectrum was noticed during testing. Beginning with an analysis of the measured pressure spectra from three different concepts, an analytical model of the clockwise and anticlockwise transverse waves was fitted to the experimental data using a nonlinear curve fitting approach to produce a simple yet useful understanding of the phenomena. A flamelet-based large eddy simulation (LES) of the entire combustion system was used to complement this analysis and confirm the mode shapes using dynamic mode decomposition (DMD). Both approaches independently identified a spinning second-order mode as the dominant one in the high frequency regime. The LES indicates the coupling of a distortion of swirl profile with a precessing vortex core as a possible cause for the onset of instability. With regard to modeling sensitivities, it is shown that subgrid scale combustion modeling has a strong impact on predicted amplitudes. Ultimately, a thickened-flame model with a modified efficiency function provided consistent results.

References

1.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
2.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridgeshire, UK
.
3.
Oefelein
,
J. C.
, and
Yang
,
V.
,
1993
, “
Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines
,”
J. Propul. Power
,
9
(
5
), pp.
657
677
.10.2514/3.23674
4.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.10.1016/j.combustflame.2013.03.020
5.
Laurent
,
C.
,
Badhe
,
A.
, and
Nicoud
,
F.
,
2021
, “
Representing the Geometrical Complexity of Liners and Boundaries in Low-Order Modeling for Thermoacoustic Instabilities
,”
J. Comput. Phys.
,
428
, p.
110077
.10.1016/j.jcp.2020.110077
6.
Bonciolini
,
G.
,
Faure-Beaulieu
,
A.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2021
, “
Low Order Modelling of Thermoacoustic Instabilities and Intermittency: Flame Response Delay and Nonlinearity
,”
Combust. Flame
,
226
, pp.
396
411
.10.1016/j.combustflame.2020.12.034
7.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2009
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas. Turbines Power
,
131
(
3
), p.
031502
.10.1115/1.2981178
8.
Ghani
,
A.
,
Poinsot
,
T.
,
Gicquel
,
L.
, and
Müller
,
J.-D.
,
2016
, “
LES Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber
,”
Flow, Turbul. Combust.
,
96
(
1
), pp.
207
226
.10.1007/s10494-015-9654-9
9.
Schulz
,
O.
,
Doll
,
U.
,
Ebi
,
D.
,
Droujko
,
J.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Thermoacoustic Instability in a Sequential Combustor: Large Eddy Simulation and Experiments
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5325
5332
.10.1016/j.proci.2018.07.089
10.
Agostinelli
,
P.
,
Laera
,
D.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Impact of Wall Heat Transfer in Large Eddy Simulation of Flame Dynamics in a Swirled Combustion Chamber
,”
Combust. Flame
,
234
, p.
111728
.10.1016/j.combustflame.2021.111728
11.
Poinsot
,
T.
,
2019
, “
Physical and Numerical Instabilities in Simulations of Reacting and Non Reacting Flows
,” S. Pirozzoli and T. Sengupta, eds.,
High-Performance Computing of Big Data for Turbulence and Combustion
, CISM International Centre for Mechanical Sciences, Vol. 592,
Springer
,
Berlin
, pp.
119
185
.10.1007/978-3-030-17012-7_4
12.
Rochette
,
B.
,
Collin-Bastiani
,
F.
,
Gicquel
,
L.
,
Vermorel
,
O.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2018
, “
Influence of Chemical Schemes, Numerical Method and Dynamic Turbulent Combustion Modeling on Les of Premixed Turbulent Flames
,”
Combust. Flame
,
191
, pp.
417
430
.10.1016/j.combustflame.2018.01.016
13.
Daviller
,
G.
,
Oztarlik
,
G.
, and
Poinsot
,
T.
,
2019
, “
A Generalized Non-Reflecting Inlet Boundary Condition for Steady and Forced Compressible Flows With Injection of Vortical and Acoustic Waves
,”
Comput. Fluids
,
190
, pp.
503
513
.10.1016/j.compfluid.2019.06.027
14.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
15.
Moon
,
K.
,
Jegal
,
H.
,
Yoon
,
C.
, and
Kim
,
K. T.
,
2020
, “
Cross-Talk-Interaction-Induced Combustion Instabilities in a Can-Annular Lean-Premixed Combustor Configuration
,”
Combust. Flame
,
220
, pp.
178
188
.10.1016/j.combustflame.2020.06.041
16.
Buschmann
,
P. E.
,
Worth
,
N. A.
, and
Moeck
,
J. P.
,
2023
, “
Thermoacoustic Oscillations in a Can-Annular Model Combustor With Asymmetries in the Can-to-Can Coupling
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
5707
5715
.10.1016/j.proci.2022.07.060
17.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
18.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
19.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.10.1016/j.combustflame.2013.04.005
20.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Bulat
,
G.
,
2017
, “
Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3817
3825
.10.1016/j.proci.2016.07.027
21.
Chen
,
Z. X.
,
Langella
,
I.
,
Swaminathan
,
N.
,
Stöhr
,
M.
,
Meier
,
W.
, and
Kolla
,
H.
,
2019
, “
Large Eddy Simulation of a Dual Swirl Gas Turbine Combustor: Flame/Flow Structures and Stabilisation Under Thermoacoustically Stable and Unstable Conditions
,”
Combust. Flame
,
203
, pp.
279
300
.10.1016/j.combustflame.2019.02.013
22.
McManus
,
L.
,
Karalus
,
M.
,
Munktell
,
E.
, and
Rogerson
,
J.
,
2023
, “
Investigation of Adaptive Mesh Refinement on an Industrial Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031022
.10.1115/1.4055685
23.
Ho
,
J.
,
Jella
,
S.
,
Talei
,
M.
,
Bourque
,
G.
,
Indlekofer
,
T.
, and
Dawson
,
J.
,
2023
, “
Assessment of the LES-FGM Framework for Capturing Azimuthal Combustion Instability in a Premixed Combustor
,”
Combust. Flame
,
225
, p.
112904
.10.1016/j.combustflame.2023.112904
24.
Nguyen
,
P.-D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.10.1016/j.combustflame.2009.07.008
25.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Nagaraja
,
S.
,
Ramalingam
,
A.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Mohamed
,
A. A. E.-S.
, et al.,
2020
, “
Comprehensive Experimental and Simulation Study of the Ignition Delay Time Characteristics of Binary Blended Methane, Ethane, and Ethylene Over a Wide Range of Temperature, Pressure, Equivalence Ratio, and Dilution
,”
Energy Fuels
,
34
(
7
), pp.
8808
8823
.10.1021/acs.energyfuels.0c00960
26.
Kelly
,
M.
,
Dunne
,
H.
,
Bourque
,
G.
, and
Dooley
,
S.
,
2023
, “
Low-Dimensional High-Fidelity Kinetic Models for Nox Formation by a Compute Intensification Method
,”
Proc. Combust. Inst.
,
39
(
1
), pp.
199
209
.10.1016/j.proci.2022.07.181
27.
Moëll
,
D.
,
Lantz
,
A.
,
Bengtson
,
K.
,
Lörstad
,
D.
,
Lindholm
,
A.
, and
Bai
,
X.-S.
,
2019
, “
Large Eddy Simulation and Experimental Analysis of Combustion Dynamics in a Gas Turbine Burner
,”
ASME J. Eng. Gas. Turbines Power
,
141
(
7
), p.
071015
.10.1115/1.4042473
28.
Légier
,
J.
,
Poinsot
,
T.
,
Varoquié
,
B.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2002
, “
Large Eddy Simulation of a Non-Premixed Turbulent Burner Using a Dynamically Thickened Flame Model
,”
IUTAM Symposium on Turbulent Mixing and Combustion
, Kingston, ON, Canada, June 3–6, pp.
315
326
.10.1007/978-94-017-1998-8_27
29.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed., France.https://elearning.cerfacs.fr/combustion/onlinePoinsotBook/onlinethirdedition/index.php
30.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part i: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
31.
Peters
,
N.
,
1999
, “
The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence
,”
J. Fluid Mech.
,
384
, pp.
107
132
.10.1017/S0022112098004212
32.
Poinsot
,
T. J.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
33.
Eldredge
,
J. D.
, and
Dowling
,
A. P.
,
2003
, “
The Absorption of Axial Acoustic Waves by a Perforated Liner With Bias Flow
,”
J. Fluid Mech.
,
485
, pp.
307
335
.10.1017/S0022112003004518
34.
Chen
,
Z. X.
,
Swaminathan
,
N.
,
Mazur
,
M.
,
Worth
,
N. A.
,
Zhang
,
G.
, and
Li
,
L.
,
2021
, “
Large Eddy Simulation and Low-Order Modelling of Azimuthal Thermoacoustic Instability in a Gas Turbine Model Annular Combustor
,”
arXiv:2111.00731
.10.1016/j.fuel.2023.127405
35.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
36.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
37.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
Siam
,
Philadelphia, PA
.
38.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
39.
Steinberg
,
A. M.
,
2009
, “
The Dynamics of Turbulent Premixed Flames: Mechanisms and Models for Turbulence-Flame Interaction
,”
Ph.D. thesis
,
University of Michigan, Ann Arbor, MI
.https://www.proquest.com/openview/7d51788816e8754c7dfc3e399bd4bb41/1?pqorigsite=gscholar&cbl=18750
40.
Popp
,
S.
,
Kuenne
,
G.
,
Janicka
,
J.
, and
Hasse
,
C.
,
2019
, “
An Extended Artificial Thickening Approach for Strained Premixed Flames
,”
Combust. Flame
,
206
, pp.
252
265
.10.1016/j.combustflame.2019.04.047
41.
Burke
,
E. M.
,
Güthe
,
F.
, and
Monaghan
,
R. F.
,
2016
, “
A Comparison of Turbulent Flame Speed Correlations for Hydrocarbon Fuels at Elevated Pressures
,”
ASME
Paper No. GT2016-57804.10.1115/GT2016-57804
42.
Biagioli
,
F.
, and
Zimont
,
V. L.
,
2002
, “
Gasdynamics Modeling of Countergradient Transport in Open and Impinging Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
2087
2095
.10.1016/S1540-7489(02)80254-1
You do not currently have access to this content.