Abstract

Health parameter estimation is the core of engine gas path analysis (GPA), which is widely adopted for engine safety improvement, as well as for operation and maintenance cost reduction. The major challenge of GPA lies in the contradiction between the high dimensions of parameters under estimation, e.g., health parameters, and the limited measurements obtainable from a small number of sensors. Existent GPA methods for health parameters commonly apply dimension reduction before estimation, leading to information loss and hence inaccurate estimation. To tackle the challenge of limited sensor measurements and to have more system outputs than parameters under estimation, we proposed to augment the output vector of the system model by combining the measurements from multiple adjacent operating points. But the engine model can face the problem of homogenization if using data from adjacent operating points. This can, in turn, lead to a low identifiability of parameters. We analyze the internal mechanism of such large deviation of the parameter estimation results based on linear models and argue for the need of nonlinear method. Hence, we propose a multistage nonlinear parameter estimation method for health parameters, combining biased and unbiased estimation. In our extensive simulations based on 10 output measurements of a JT9D engine, our method can estimate 130% more parameters than the widely used GPA method, while reducing the maximum estimation error of health parameters from 2.2% to 0.1%.

References

1.
Li
,
Y. G.
,
2002
, “
Performance-Analysis-Based Gas Turbine Diagnostics: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
5
), pp.
363
377
.10.1243/095765002320877856
2.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
3.
Urban
,
L. A.
, and
Volponi
,
A. J.
,
1992
, “
Mathematical Methods of Relative Engine Performance Diagnostics
,”
SAE Trans.
,
101
, pp.
2025
2050
.10.4271/922048
4.
Mavris
,
D.
, and
Denney
,
R.
,
2009
, “
Optimal Robust Matching of Engine Models to Test Data
,” Aerospace Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, Report No.
AFRL-SR-AR-TR-09-0119
.https://apps.dtic.mil/sti/citations/ADA498300
5.
Simon
,
D. L.
, and
Garg
,
S.
,
2010
, “
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031601
.10.1115/1.3157096
6.
Chen
,
Q.
,
Sheng
,
H.
, and
Zhang
,
T.
,
2022
, “
An Improved Nonlinear Onboard Adaptive Model for Aero-Engine Performance Control
,”
Chin. J. Aeronaut.
,
36
(
10
), pp.
317
334
.10.1016/j.cja.2022.12.005
7.
Simon
,
D.
, and
Simon
,
D. L.
,
2010
, “
Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation
,”
Int. J. Syst. Sci.
,
41
(
2
), pp.
159
171
.10.1080/00207720903042970
8.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Berios
,
G.
, and
Papailiou
,
K.
,
1991
, “
Jet Engine Fault Detection With Discrete Operating Points Gas Path Analysis
,”
J. Propul. Power
,
7
(
6
), pp.
1043
1048
.10.2514/3.23425
9.
Stamatis
,
A. G.
,
2011
, “
Evaluation of Gas Path Analysis Methods for Gas Turbine Diagnosis
,”
J. Mech. Sci. Technol.
,
25
(
2
), pp.
469
477
.10.1007/s12206-010-1207-5
10.
Mathioudakis
,
K.
,
Kamboukos
,
P.
, and
Stamatis
,
A.
,
2002
, “
Turbofan Performance Deterioration Tracking Using Nonlinear Models and Optimization Techniques
,”
ASME J. Turbomach.
,
124
(
4
), pp.
580
587
.10.1115/1.1512678
11.
Morelli
,
E. A.
, and
Klein
,
V.
,
2016
,
Aircraft System Identification: Theory and Practice
,
Sunflyte Enterprises
,
Williamsburg, VA
.
12.
Doel
,
D. L.
,
1994
, “
TEMPER—a Gas-Path Analysis Tool for Commercial Jet Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
82
89
.10.1115/1.2906813
13.
Belsley
,
D. A.
,
Kuh
,
E.
, and
Welsch
,
R. E.
,
2005
,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
,
Wiley
,
Hoboken, NJ
.
14.
Escher
,
P. C.
,
1995
, “
Pythia: An Object-Orientated Gas Path Analysis Computer Program for General Applications
,”
Ph.D. dissertation
,
Cranfield University
,
Cranfield, UK
.http://hdl.handle.net/1826/3457
15.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2021
,
Introduction to Linear Regression Analysis
,
Wiley
,
Hoboken, NJ
.
16.
Sallee
,
G. P.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data: JT9D Jet Engine Diagnostics Program
,” Report No.
NASA-CR-135448
.https://ntrs.nasa.gov/citations/19800013837
17.
Sallee
,
G. P.
,
1978
, “
Performance Deterioration Based on in-Service Engine Data: JT9D Jet Engine Diagnostics Program
,” Report No.
NASA-CR-159525
.https://ntrs.nasa.gov/citations/19800016845
18.
Wei
,
Z.
,
Zhang
,
S.
,
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2020
, “
Gas Turbine Aero-Engines Real Time on-Board Modelling: A Review, Research Challenges, and Exploring the Future
,”
Prog. Aerosp. Sci.
,
121
, p.
100693
.10.1016/j.paerosci.2020.100693
19.
Chapman
,
J. W.
,
Lavelle
,
T. M.
,
May
,
R. D.
,
Litt
,
J. S.
, and
Guo
,
T. H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,” Report No.
E-18833
.https://ntrs.nasa.gov/citations/20140012486
20.
Volponi
,
A.
,
2008
, “
Enhanced Self Tuning on-Board Real-Time Model (eSTORM) for Aircraft Engine Performance Health Tracking
,” Report No.
NASA/CR-2008-215272
.https://ntrs.nasa.gov/citations/20080032604
You do not currently have access to this content.