Abstract

Hydrogen-fueled carbon-free energy is a growing prospect for the future of several industries, including the aeronautical and energy generation sectors. However, the transition to hydrogen comes with several challenges: flame stabilization due to the unique combustion properties of hydrogen compared to conventional fuels and control of nitrogen oxides (NOx) production due to the higher combustion temperature. In addition, the high flammability of hydrogen poses an increased risk of flashback in premixed configurations commonly used to generate low-NOx flames. As a consequence, research into strategies for low-NOx hydrogen combustion is developing, and several technologies are being considered for industrial use. Among these technologies, we consider here a dual swirl coaxial injector operated in nonpremixed conditions. This setup enables the stabilization of multiple types of flame structures that are parametrically investigated for their NOx emissions. The flame structure is observed using OH* chemiluminescence images collected using an intensified CCD camera equipped with a bandpass filter. Exhaust gas species mole fractions of NO, NO2, and O2 are measured using NDIR gas detectors and a paramagnetic sensor. This investigation reveals that stabilization of hydrogen-air flames on the double swirl injector is possible and that varying the flow parameters induces changes in structure that affect NOx emissions, independently of swirl level, residence time, and temperature that also play a role. The study is carried out at atmospheric pressure.

References

1.
Chen
,
T.-M.
,
Kuschner
,
W. G.
,
Gokhale
,
J.
, and
Shofer
,
S.
,
2007
, “
Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects
,”
Am. J. Med. Sci.
,
333
(
4
), pp.
249
256
.10.1097/MAJ.0b013e31803b900f
2.
Johnson
,
C.
,
Henshaw
,
J.
, and
Mclnnes
,
G.
,
1992
, “
Impact of Aircraft and Surface Emissions of Nitrogen Oxides on Tropospheric Ozone and Global Warming
,”
Nature
,
355
(
6355
), pp.
69
71
.10.1038/355069a0
3.
Skottene
,
M.
, and
Rian
,
K. E.
,
2007
, “
A Study of NOx Formation in Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3572
3585
.10.1016/j.ijhydene.2007.02.038
4.
Lhuillier
,
C.
,
Oddos
,
R.
,
Zander
,
L.
,
Lückoff
,
F.
,
Göckeler
,
K.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2017
, “
Hydrogen-Enriched Methane Combustion Diluted With Exhaust Gas and Steam: Fundamental Investigation on Laminar Flames and NOx Emissions
,”
ASME
Paper No. GT2017-64885.10.1115/GT2017-64885
5.
Göke
,
S.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Reichel
,
T.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Paschereit
,
C. O.
,
2014
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091508
.10.1115/1.4026942
6.
Ingenito
,
A.
,
Agresta
,
A.
,
Andriani
,
R.
, and
Gamma
,
F.
,
2015
, “
RQL Combustion as an Effective Strategy to NOx Reduction in Gas Turbine Engines
,”
ASME
Paper No. IMECE2014-36898.10.1115/IMECE2014-36898
7.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
8.
Cappelletti
,
A.
, and
Martelli
,
F.
,
2017
, “
Investigation of a Pure Hydrogen Fueled Gas Turbine Burner
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10513
10523
.10.1016/j.ijhydene.2017.02.104
9.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry-Low-NOx Micromix Combustor Research for Hydrogen-Rich Fuels—An Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071002
.10.1115/1.4049764
10.
Boyd Fackler
,
K.
,
Karalus
,
M.
,
Novosselov
,
I.
,
Kramlich
,
J.
,
Malte
,
P.
, and
Vijlee
,
S.
,
2015
, “
NOx Behavior for Lean-Premixed Combustion of Alternative Gaseous Fuels
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
041504
.10.1115/1.4031478
11.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Strakey
,
P. A.
, and
Sidwell
,
T.
,
2009
, “
Laboratory Investigations of a Low-Swirl Injector With H2 and CH4 at Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3001
3009
.10.1016/j.proci.2008.06.141
12.
Lin
,
Y.-C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2012
, “
Combustion Characteristics and NOX Emission of Hydrogen-Rich Fuel Gases at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2012-69080.10.1115/GT2012-69080
13.
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2017
, “
Interaction Mechanisms of Fuel Momentum With Flashback Limits in Lean-Premixed Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4518
4529
.10.1016/j.ijhydene.2016.11.018
14.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
15.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Both
,
A.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2020
, “
Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
479
507
.10.1007/s10494-019-00106-z
16.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.10.1016/0010-2180(90)90126-C
17.
Yuasa
,
S.
,
1986
, “
Effects of Swirl on the Stability of Jet Diffusion Flames
,”
Combust. Flame
,
66
(
2
), pp.
181
192
.10.1016/0010-2180(86)90090-8
18.
Syred
,
N.
,
Chigier
,
N. A.
, and
Beér
,
J. M.
,
1971
, “
Flame Stabilization in Recirculation Zones of Jets With Swirl
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
617
624
.10.1016/S0082-0784(71)80063-2
19.
Terasaki
,
T.
, and
Hayashi
,
S.
,
1996
, “
The Effects of Fuel-Air Mixing on NOx Formation in Non-Premixed Swirl Burners
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2733
2739
.10.1016/S0082-0784(96)80110-X
20.
Claypole
,
T. C.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
81
89
.10.1016/S0082-0784(81)80013-6
21.
Degenève
,
A.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Effects of Swirl on the Stabilization of Non-Premixed Oxygen-Enriched Flames Above Coaxial Injectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121018
.10.1115/1.4045024
22.
Degenève
,
A.
,
Vicquelin
,
R.
,
Mirat
,
C.
,
Caudal
,
J.
, and
Schuller
,
T.
,
2021
, “
Impact of Co- and Counter-Swirl on Flow Recirculation and Liftoff of Non-Premixed Oxy-Flames Above Coaxial Injectors
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5501
5508
.10.1016/j.proci.2020.06.279
23.
Merlo
,
N.
,
Boushaki
,
T.
,
Chauveau
,
C.
,
Persis
,
S. D.
,
Pillier
,
L.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2014
, “
Combustion Characteristics of Methane–Oxygen Enhanced Air Turbulent Non-Premixed Swirling Flames
,”
Exp. Therm. Fluid Sci.
,
56
(
7
), pp.
53
60
.10.1016/j.expthermflusci.2013.11.019
24.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), pp.
399
411
.10.1016/j.firesaf.2004.03.002
25.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
(Energy and Engineering Science Series),
Abacus Press
,
Tunbridge Wells, Kent, UK
.
26.
Baukal
,
C.
, and
Eleazer
,
P.
,
1998
, “
Quantifying NOx for Industrial Combustion Processes
,”
J. Air Waste Manage. Assoc.
,
48
(
1
), pp.
52
58
.10.1080/10473289.1998.10463664
27.
Schefer
,
R. W.
,
Kulatilaka
,
W. D.
,
Patterson
,
B. D.
, and
Settersten
,
T. B.
,
2009
, “
Visible Emission of Hydrogen Flames
,”
Combust. Flame
,
156
(
6
), pp.
1234
1241
.10.1016/j.combustflame.2009.01.011
28.
Vu
,
B. T.
, and
Gouldin
,
F. C.
,
1982
, “
Flow Measurements in a Model Swirl Combustor
,”
AIAA J.
,
20
(
5
), pp.
642
651
.10.2514/3.51122
29.
Chen
,
R.-H.
,
Driscoll
,
J. F.
,
Kelly
,
J.
,
Namazian
,
M.
, and
Schefer
,
R. W.
,
1990
, “
A Comparison of Bluff-Body and Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
,
71
(
4–6
), pp.
197
217
.10.1080/00102209008951632
You do not currently have access to this content.