Abstract

Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle, which involves combustion under supercritical-CO2 conditions. While some work has been conducted in collecting ignition delay times (IDT) at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of nonideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were measured behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system, which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.

References

1.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.10.1115/GT2014-26952
2.
Son
,
S.
,
Heo
,
J. Y.
,
Kim
,
N. I.
,
Jamal
,
A.
, and
Lee
,
J. I.
,
2019
, “
Reduction of CO2 Emission for Solar Power Backup by Direct Integration of Oxy-Combustion Supercritical CO2 Power Cycle With Concentrated Solar Power
,”
Energy Convers. Manage.
,
201
, p.
112161
.10.1016/j.enconman.2019.112161
3.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
, Jr
, et al.,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
, pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
4.
Beigzadeh
,
A.
,
Alabbad
,
M.
,
Liu
,
D.
,
Aljohani
,
K.
,
Hakimov
,
K.
,
Kashif
,
T. A.
,
Zanganeh
,
K.
, et al.,
2023
, “
Reaction Kinetics for High Pressure Hydrogen Oxy-Combustion in the Presence of High Levels of H2O and CO2
,”
Combust. Flame
,
247
, p.
112498
.10.1016/j.combustflame.2022.112498
5.
Cooper
,
S. P.
,
Mathieu
,
O.
,
Mohr
,
D. J.
, and
Petersen
,
E. L.
,
2022
, “
Ignition Chemistry of Syngas Highly Diluted in CO2
,”
ASME
Paper No. GT2022-81134.10.1115/GT2022-81134
6.
Barak
,
S.
,
Pryor
,
O.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Vasu
,
S.
,
Lu
,
X.
, and
Forrest
,
B.
,
2020
, “
Ignition Delay Times of Oxy-Syngas and Oxy-Methane in Supercritical CO2 Mixtures for Direct-Fired Cycles
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021014
.10.1115/1.4045743
7.
Karimi
,
M.
,
Ochs
,
B.
,
Sun
,
W.
, and
Ranjan
,
D.
,
2021
, “
High Pressure Ignition Delay Times of H2/CO Mixture in Carbon Dioxide and Argon Diluent
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
251
260
.10.1016/j.proci.2020.06.268
8.
Turner
,
M. A.
, and
Petersen
,
E. L.
,
2023
, “
High-Pressure Laminar Flame Speeds and Markstein Lengths of Syngas Flames Diluted in Carbon Dioxide and Helium
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021022
.10.1115/1.4055796
9.
Cooper
,
S. P.
,
Mulvihill
,
C. R.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Crofton
,
M. W.
, and
Lam
,
K. Y.
,
2020
, “
CH Kinetics Measurements and Their Importance for Modeling Prompt NOx Formation in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041007
.10.1115/1.4044468
10.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H + O2 + CO2 → HO2 + CO2
,”
Energy Fuels
,
25
(
3
), pp.
990
997
.10.1021/ef1015928
11.
Shao
,
J.
,
Choudhary
,
R.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2023
, “
Shock Tube/Laser Absorption Measurement of the Rate Constant of the Reaction: H2O2+ CO2 = 2OH+ CO2
,”
Proc. Combust. Inst.
, 39(1), pp. 735–743.10.1016/j.proci.2022.08.021
12.
Rudolph
,
C.
,
Grégoire
,
C. M.
,
Cooper
,
S. P.
,
Alturaifi
,
S. A.
,
Mathieu
,
O.
,
Petersen
,
E. L.
, and
Atakan
,
B.
,
2023
, “
Shock-Tube Study on High-Temperature CO Formation During Dry Methane Reforming
,”
Proc. Combust. Inst.
,
39
(
1
), pp.
715
724
.10.1016/j.proci.2022.08.005
13.
Mathieu
,
O.
,
Grégoire
,
C. M.
,
Khan-Ghauri
,
M.
,
Cooper
,
S. P.
, and
Petersen
,
E. L.
,
2022
, “
Experimental Study of the Formation of CO During Ethanol Pyrolysis and Dry Reforming With CO2
,”
Appl. Energy Combust. Sci.
,
11
, p.
100076
.10.1016/j.jaecs.2022.100076
14.
He
,
D.
,
Nativel
,
D.
,
Herzler
,
J.
,
Jeffries
,
J. B.
,
Fikri
,
M.
, and
Schulz
,
C.
,
2020
, “
Laser-Based CO Concentration and Temperature Measurements in High-Pressure Shock-Tube Studies of n-Heptane Partial Oxidation
,”
Appl. Phys. B
,
126
(
8
), p. 142.10.1007/s00340-020-07492-7
15.
Loparo
,
Z. E.
,
Lopez
,
J. G.
,
Neupane
,
S.
,
Partridge
,
W. P.
, Jr
,
Vodopyanov
,
K.
, and
Vasu
,
S. S.
,
2017
, “
Fuel-Rich n-Heptane Oxidation: A Shock Tube and Laser Absorption Study
,”
Combust. Flame
,
185
, pp.
220
233
.10.1016/j.combustflame.2017.07.016
16.
Mathieu
,
O.
,
Mulvihill
,
C. R.
, and
Petersen
,
E. L.
,
2019
, “
Assessment of Modern Detailed Kinetics Mechanisms to Predict CO Formation From Methane Combustion Using Shock-Tube Laser-Absorption Measurements
,”
Fuel
,
236
, pp.
1164
1180
.10.1016/j.fuel.2018.09.029
17.
Nativel
,
D.
,
Cooper
,
S. P.
,
Lipkowicz
,
T.
,
Fikri
,
M.
,
Petersen
,
E. L.
, and
Schulz
,
C.
,
2020
, “
Impact of Shock-Tube Facility-Dependent Effects on Incident-and Reflected-Shock Conditions Over a Wide Range of Pressures and Mach Numbers
,”
Combust. Flame
,
217
, pp.
200
211
.10.1016/j.combustflame.2020.03.023
18.
Nativel
,
D.
,
Herzler
,
J.
,
Krzywdziak
,
S.
,
Peukert
,
S.
,
Fikri
,
M.
, and
Schulz
,
C.
,
2022
, “
Shock-Tube Study of the Influence of Oxygenated Additives on Benzene Pyrolysis: Measurement of Optical Densities, Soot Inception Times and Comparison With Simulations
,”
Combust. Flame
,
243
, p.
111985
.10.1016/j.combustflame.2022.111985
19.
Mulvihill
,
C. R.
,
Keesee
,
C. L.
,
Sikes
,
T.
,
Teixeira
,
R. S.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2019
, “
Ignition Delay Times, Laminar Flame Speeds, and Species Time-Histories in the H2S/CH4 System at Atmospheric Pressure
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
735
742
.10.1016/j.proci.2018.06.034
20.
Deminsky
,
M.
,
Chorkov
,
V.
,
Belov
,
G.
,
Cheshigin
,
I.
,
Knizhnik
,
A.
,
Shulakova
,
E.
,
Shulakov
,
M.
, et al.,
2003
, “
Chemical Workbench––Integrated Environment for Materials Science
,”
Comput. Mater. Sci.
,
28
(
2
), pp.
169
178
.10.1016/S0927-0256(03)00105-8
21.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.10.1016/j.combustflame.2017.03.019
22.
Smith
,
G.
,
Tao
,
Y.
, and
Wang
,
H.
,
2016
, “
Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)
”.https://web.stanford.edu/group/haiwanglab/FFCM1/pages/download.html
23.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, USC Mech Version II
,” accessed September 26, 2023, https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm
24.
Smith
,
G. P.
,
1999
, “
GRI-Mech 3.0
,” accessed Sept. 16, 2022, http://www.me.berkley.edu/gri_mech/
25.
Zhu
,
L.
,
Panigrahy
,
S.
,
Elliott
,
S. N.
,
Klippenstein
,
S. J.
,
Baigmohammadi
,
M.
,
Mohamed
,
A. A. E.-S.
, et al.,
2023
, “
A Wide Range Experimental Study and Further Development of a Kinetic Model Describing Propane Oxidation
,”
Combust. Flame
,
248
, p.
112562
.10.1016/j.combustflame.2022.112562
26.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
, et al.,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
, p.
021503
.10.1115/1.4007737
You do not currently have access to this content.