Abstract

A novel methodology is proposed to evaluate fuel’s performance in spark ignition (SI) engines based on the fuel’s energy quality and availability to produce work. Experiments used a diesel engine with a high compression ratio (CR), modified by SI operation, and using interchangeable pistons. The interchangeable pistons allowed for the generation of varying degrees of turbulence during combustion, ranging from middle to high turbulence. The generating efficiency (ηq), and the maximum electrical energy (EEmax) were measured at the knocking threshold (KT). A cooperative fuel research (CFR) engine operating at the KT was also used to measure the methane number (MN), and critical compression ratio (CCR) for gaseous fuels. Fuels with MNs ranging from 37 to 140 were used: two biogases, methane, propane, and five fuel blends of biogas with methane/propane and hydrogen. Results from both engines are linked at the KT to determine correlations between fuel’s physicochemical properties and the knocking phenomenon. Certain correlations between knocking and fuel properties were experimentally determined: energy density (ED), laminar flame speed (SL), adiabatic flame temperature (Tad), heat capacity ratio (γ), and hydrogen/carbon (H/C) ratio. Based on the results, a mathematical methodology for estimating EEmax and ηq in terms of ED, SL, Tad, γ, H/C, and MN is presented. These equations were derived from the classical maximum thermal efficiency for SI engines given by the Otto cycle efficiency (ηOtto). Fuels with MN > 97 got higher EEmax, and ηqthan propane, and diesel fuels.

References

1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engines Fundamentals
,
Mc Graw Hill
, New York, Chapters 1 and 6.
2.
Heywood
,
J. B.
, and
Tagalian
,
J.
,
1986
, “
Flame Initiation in a SI Engine
,”
Combust. Flame
,
64
(
2
), pp.
243
246
.10.1016/0010-2180(86)90062-3
3.
Wissink
,
M. L.
,
Splitter
,
D. A.
,
Dempsey
,
A. B.
,
Curran
,
S. J.
,
Kaul
,
B. C.
, and
Szybist
,
J. P.
,
2017
, “
An Assessment of Thermodynamic Merits for Current and Potential Future Engine Operating Strategies
,”
Int. J. Engine Res.
,
18
(
1–2
), pp.
155
169
.10.1177/1468087416686698
4.
Finneran
,
J.
,
Garner
,
C. P.
,
Bassett
,
M.
, and
Hall
,
J.
,
2020
, “
A Review of Split-Cycle Engines
,”
Int. J. Engine Res.
,
21
(
6
), pp.
897
914
.10.1177/1468087418789528
5.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2012
, “
Effect of Compression Ratio on the Performance and Combustion of a Biogas Fueled SI Engine
,”
Fuel
,
95
(
0
), pp.
247
256
.10.1016/j.fuel.2011.10.059
6.
Bora
,
B. J.
,
Saha
,
U. K.
,
Chatterjee
,
S.
, and
Veer
,
V.
,
2014
, “
Effect of Compression Ratio on Performance, Combustion and Emission Characteristics of a Dual Fuel Diesel Engine Run on Biogas
,”
Energy Convers. Manage.
,
87
, pp.
1000
1009
.10.1016/j.enconman.2014.07.080
7.
Zurbriggen
,
F.
,
Ott
,
T.
,
Onder
,
C.
, and
Guzzella
,
L.
,
2014
, “
Optimal Control of the Heat Release Rate of an Internal Combustion Engine With Pressure Gradient, Maximum Pressure, and Knock Constraints
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
6
), p. 061006.10.1115/1.4027592
8.
Miller
,
S. L.
,
Svrcek
,
M. N.
,
Teh
,
K.-Y.
, and
Edwards
,
C. F.
,
2011
, “
Assessing the Feasibility of Increasing Engine Efficiency Through Extreme Compression
,”
Int. J. Engine Res.
,
12
(
3
), pp.
293
307
.10.1177/1468087411404299
9.
Caton
,
J. A.
,
2018
, “
Maximum Efficiencies for Internal Combustion Engines: Thermodynamic Limitations
,”
Int. J. Engine Res.
,
19
(
10
), pp.
1005
1023
.10.1177/1468087417737700
10.
Edson
,
M. H.
,
1962
, “
The Influence of Compression Ratio and Dissociation on Ideal Otto Cycle Engine Thermal Efficiency
,”
SAE
Paper No. 620557.10.4271/620557
11.
Nag
,
P. K.
,
2005
,
Engineering Thermodynamics, Sixth Edition
,
McGraw-Hill
,
New York
.
12.
University of Seville, 2021, “Ciclo Otto (GIE),”
Department of Applied Physics, University of Seville, Sevilla, Spain, accessed Aug. 25, 2021,
http://laplace.us.es/wiki/index.php/Ciclo_Otto_(GIE)
13.
Uchida
,
N.
,
Okamoto
,
T.
, and
Watanabe
,
H.
,
2018
, “
A New Concept of Actively Controlled Rate of Diesel Combustion for Improving Brake Thermal Efficiency of Diesel Engines
,”
Int. J. Engine Res.
,
19
(
4
), pp.
474
487
.10.1177/1468087417720332
14.
Breaux
,
B.
,
Hoops
,
C.
, and
Glewen
,
W.
,
2016
, “
The Effect of in-Cylinder Turbulence on Lean, Premixed, Spark-Ignited Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), pp.
081504
081515
.10.1115/1.4032418
15.
Karim
,
G. A.
,
2007
, “
The Onset of Knock in Gas-Fueled SI Engines Prediction and Experiment
,”
J. Kones Powertrain Transp.
,
14
(
4
), pp.
165
175
.https://kones.eu/ep/2007/vol14/no4/JO%20KONES%202007%20NO.%204,%20VOL.%2014%20KARIM%202.pdf
16.
Shu
,
G.
,
Pan
,
J.
, and
Wei
,
H.
,
2013
, “
Analysis of Onset and Severity of Knock in SI Engine Based on in-Cylinder Pressure Oscillations
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1297
1306
.10.1016/j.applthermaleng.2012.11.039
17.
Karim
,
G. A.
,
2003
, “
Knock and Combustion Characteristics of CH4, CO, H2 and Their Binary Mixtures
,”
SAE
Paper No. 2003-01-3088.10.4271/2003-01-3088
18.
Yu
,
X.
,
Liu
,
Z.
,
Wang
,
Z.
, and
Dou
,
H.
,
2013
, “
Optimize Combustion of Compressed Natural Gas Engine by Improving in-Cylinder Flows
,”
Int. J. Autom. Technol.
,
14
(
4
), pp.
539
549
.10.1007/s12239-013-0058-3
19.
Leiker
,
M.
, and
Christoph
,
K.
,
1972
, “
Evaluation of Antiknocking Property of Gaseous Fuels by Means of Methane Number and Its Practical Application to Gas Engines
,”
Am. Soc. Mech. Eng.
,
72
, p.
DGP-4
.https://books.google.com.pe/books/about/Evaluation_of_Antiknocking_Property_of_G.html?id=o_xgkQEACAAJ&redir_esc=y
20.
Arunachalam
,
A.
, and
Olsen
,
D. B.
,
2012
, “
Experimental Evaluation of Knock Characteristics of Producer Gas
,”
Biomass Bioenergy
,
37
, pp.
169
176
.10.1016/j.biombioe.2011.12.016
21.
Malenshek
,
M.
, and
Olsen
,
D. B.
,
2009
, “
Methane Number Testing of Alternative Gaseous Fuels
,”
Fuel
,
88
(
4
), pp.
650
656
.10.1016/j.fuel.2008.08.020
22.
Ryan
,
T. W.
,
Callahan
,
T. J.
, and
King
,
S. R.
,
1993
, “
Engine Knock Rating of Natural Gases Methane Number
,”
ASME J. Eng. Gas Turbine Power
,
115
(
4
), pp.
769
776
.10.1115/1.2906773
23.
Mardi
,
K. M.
,
Khalilarya
,
S.
, and
Nemati
,
A.
,
2014
, “
A Numerical Investigation on the Influence of EGR in a Supercharged SI Engine Fueled With Gasoline and Alternative Fuels
,”
Energy Convers. Manage.
,
83
, pp.
260
269
.10.1016/j.enconman.2014.03.031
24.
Lee
,
K.
,
Kim
,
T.
,
Cha
,
H.
,
Song
,
S.
, and
Min Chu
,
K.
,
2010
, “
Generating Efficiency and NOx Emissions of a Gas Engine Generator Fueled With a Biogas–Hydrogen Blend and Using an Exhaust Gas Recirculation System
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5723
5730
.10.1016/j.ijhydene.2010.03.076
25.
Li
,
H.
, and
Karim
,
G. A.
,
2004
, “
Knock in SI Hydrogen Engines
,”
Int. J. Hydrogen Energy
,
29
(
8
), pp.
859
865
.10.1016/j.ijhydene.2003.09.013
26.
Garcia
,
A.
, and
Gomes
,
C.
, “
Conceptual Analysis of Turbocompressors on Otto Cycle Engines
,”
SAE
Paper No. 2017-36-0167.10.4271/2017-36-0167
27.
Britto
,
R.
,
Coelho
,
E.
, and
Frederico
,
S.
, “
Development of Heavy Duty Otto Cycle Engine Powered by Ethanol
,”
SAE
Paper No. 2013-36-0324.10.4271/2013-36-0324
28.
Pipitone
,
E.
,
Beccari
,
S.
, and
Genchi
,
G.
,
2017
, “
Supercharging the Double-Fueled Spark Ignition Engine: Performance and Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p. 102809.10.1115/1.4036514
29.
Chen
,
Y.
, and
Raine
,
R.
,
2015
, “
A Study on the Influence of Burning Rate on Engine Knock From Empirical Data and Simulation
,”
Combust. Flame
,
162
(
5
), pp.
2108
2118
.10.1016/j.combustflame.2015.01.009
30.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2007
, “
Effect of Hydrogen Addition on the Performance of a Biogas Fueled SI Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2057
2065
.10.1016/j.ijhydene.2006.09.001
31.
Kumar
,
S.
,
Sahoo
,
N.
, and
Mohanty
,
K.
,
2019
, “
Comparative Assessment of a SI Engine Fueled With Gasoline and Raw Biogas
,”
Renewable Energy
,
134
, pp.
1307
1319
.10.1016/j.renene.2018.09.049
32.
Chandra
,
R.
,
Vijay
,
V. K.
,
Subbarao
,
P. M. V.
, and
Khura
,
T. K.
,
2011
, “
Performance Evaluation of a Constant Speed IC Engine on CNG, Methane Enriched Biogas, and Biogas
,”
Appl. Energy
,
88
(
11
), pp.
3969
3977
.10.1016/j.apenergy.2011.04.032
33.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis
,”
Appl. Energy
,
92
, pp.
628
636
.10.1016/j.apenergy.2011.11.079
34.
Schiffgens
,
H. J.
,
Endres
,
H.
,
Wackertapp
,
H.
, and
Schrey
,
E.
,
1994
, “
Concepts for the Adaptation of SI Gas Engines to Changing Methane Number
,”
ASME J. Eng. Gas Turbine Power
,
116
(
4
), pp.
733
739
.10.1115/1.2906880
35.
Azevedo
,
M.
, “
Piston Top Shapes and Influence Upon Otto Cycle Combustion
,”
SAE
Paper No. 921465E-1992.10.4271/921465
36.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2013
, “
Effect of Swirl on the Performance and Combustion of a Biogas Fueled SI Engine
,”
Energy Convers. Manage.
,
76
, pp.
463
471
.10.1016/j.enconman.2013.07.071
37.
Makareviciene
,
V.
,
Sendzikiene
,
E.
,
Pukalskas
,
S.
,
Rimkus
,
A.
, and
Vegneris
,
R.
,
2013
, “
Performance and Emission Characteristics of Biogas Used in Diesel Engine Operation
,”
Energy Convers. Manage.
,
75
, pp.
224
233
.10.1016/j.enconman.2013.06.012
38.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2008
, “
Investigation on the Effect of Concentration of Methane in Biogas When Used as a Fuel for a SI Engine
,”
Fuel
,
87
(
8–9
), pp.
1651
1659
.10.1016/j.fuel.2007.08.014
39.
Bond
,
T.
, and
Templeton
,
M. R.
,
2011
, “
History and Future of Domestic Biogas Plants in the Developing World
,”
Energy Sustainable Dev.
,
15
(
4
), pp.
347
354
.10.1016/j.esd.2011.09.003
40.
Patel
,
S.
,
Tonjes
,
D.
, and
Mahajan
,
D.
,
2011
, “
Biogas Potential on Long Island, New York: A Quantification Study
,”
J. Renewable Sustainable Energy
,
3
(
4
), pp.
043118
043128
.10.1063/1.3614443
41.
Huang
,
J.
, and
Crookes
,
R. J.
,
1998
, “
Assessment of Simulated Biogas as a Fuel for the SI Engine
,”
Fuel
,
77
(
15
), pp.
1793
1801
.10.1016/S0016-2361(98)00114-8
42.
Jeong
,
C.
,
Kim
,
T.
,
Lee
,
K.
,
Song
,
S.
, and
Chun
,
K.
,
2009
, “
Generating Efficiency and Emissions of a Spark-Ignition Gas Engine Generator Fueled With Biogas–Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
34
(
23
), pp.
9620
9627
.10.1016/j.ijhydene.2009.09.099
43.
Kan
,
X.
,
Zhou
,
D.
,
Yang
,
W.
,
Zhai
,
X.
, and
Wang
,
C. H.
,
2018
, “
An Investigation on Utilization of Biogas and Syngas Produced From Biomass Waste in Premixed SI Engine
,”
Appl. Energy
,
212
, pp.
210
222
.10.1016/j.apenergy.2017.12.037
44.
Kim
,
Y.
,
Kawahara
,
N.
,
Tsuboi
,
K.
, and
Tomita
,
E.
,
2016
, “
Combustion Characteristics and NOX Emissions of Biogas Fuels With Various CO2 Contents in a Micro co-Generation Spark-Ignition Engine
,”
Appl. Energy
,
182
, pp.
539
547
.10.1016/j.apenergy.2016.08.152
45.
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Rathnam
,
S.
, and
Bhargava
,
S.
,
2001
, “
Fuel Composition Effects on Emissions From a Spark-Ignited Engine Operated on Simulated Biogases
,”
Trans. ASME
,
123
(
1
), pp.
132
138
.10.1115/1.1338951
46.
Cheolwoong
,
P.
,
Park
,
S.
,
Lee
,
Y.
,
Kim
,
C.
,
Lee
,
S.
, and
Moriyoshi
,
Y.
,
2011
, “
Performance and Emission Characteristics of a SI Engine Fueled by Low Calorific Biogas Blended With Hydrogen
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10080
10088
.10.1016/j.ijhydene.2011.05.018
47.
Gómez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2016
, “
Prediction and Measurement of the Critical Compression Ratio and Methane Number for Blends of Biogas With Methane, Propane, and Hydrogen
,”
Fuel
,
186
, pp.
168
175
.10.1016/j.fuel.2016.08.064
48.
Gómez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2018
, “
Engine Operation Just Above and Below the KT Using a Blend of Biogas and Natural Gas
,”
Energy
,
153
, pp.
719
725
.10.1016/j.energy.2018.04.079
49.
Gómez Montoya
,
J. P.
,
Amador
,
G.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2018
, “
Strategies to Improve the Performance of a SI Engine Using Fuel Blends of Biogas With Natural Gas, Propane, and Hydrogen
,”
Int. J. Hydrogen Energy
,
43
(
46
), pp.
21592
21602
.10.1016/j.ijhydene.2018.10.009
50.
Gómez Montoya
,
J. P.
,
Amador
,
G.
, and
Amell
,
A. A.
,
2018
, “
Effect of Equivalence Ratio on Knocking Tendency in SI Engines Fueled With Fuel Blends of Biogas, Natural Gas, Propane, and Hydrogen
,”
Int. J. Hydrogen Energy
,
43
(
51
), pp.
23041
23049
.10.1016/j.ijhydene.2018.10.117
51.
Gómez Montoya
,
J. P.
, and
Amell
,
A. A.
,
2019
, “
Effect of the Turbulence Intensity on Knocking Tendency in a SI Engine With High Compression Ratio Using Biogas and Blends With Natural Gas, Propane, and Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18532
18544
.10.1016/j.ijhydene.2019.05.146
52.
Gómez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2019
, “
Operation of a SI Engine With High CR Using Biogas Blended With Natural Gas, Propane, and Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p. 051016.10.1115/1.4041755
53.
Gómez Montoya
,
J. P.
, and
Amell
,
A. A.
,
2021
, “
Phenomenological Analysis of the Combustion of Gaseous Fuels to Measure the Energy Quality and the Capacity to Produce Work in Spark Ignition Engines
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p. 051016.10.1115/1.4049263
54.
Beccari
,
A.
,
Beccari
,
S.
, and
Pipitone
,
E.
,
2010
, “
An Analytical Approach for the Evaluation of the Optimal Combustion Phase in SI Engines
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p. 032802.10.1115/1.3155395
55.
Enrico Corti
,
E.
, and
Forte
,
C.
,
2011
, “
Spark Advance Real-Time Optimization Based on Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p. 092804.10.1115/1.4002919
56.
Amador
,
G.
,
Corredor
,
L.
,
Gómez Montoya
,
J. P.
, and
Olsen
,
D. B.
,
2019
, “
MN Measurements of Hydrogen/Carbon Monoxide Mixtures Diluted With Carbon Dioxide for Syngas Spark Ignited Internal Combustion Engine Applications
,”
Fuel J.
,
236
, pp.
535
543
.10.1016/j.fuel.2018.09.032
57.
Wise
,
D.
,
2013
, “
Investigation into Producer Gas Utilization in High Performance Natural Gas Engines
,” Ph.D. dissertation,
Colorado State University
, Fort Collins, CO.
58.
Zaker
,
K.
,
Askari
,
M. H.
,
Jazayeri
,
A.
,
Ebrahimi
,
R.
,
Zaker
,
B.
, and
Ashjaee
,
M.
,
2015
, “
Open Cycle CFD Investigation of SI Engine Fueled With Hydrogen/Methane Blends Using Detailed Kinetic Mechanism
,”
Int. J. Hydrogen Energy
,
40
(
40
), pp.
14006
14019
.10.1016/j.ijhydene.2015.08.040
59.
Harshavardhan
,
B.
, and
Mallikarjuna
,
J. M.
,
2015
, “
Effect of Piston Shape on in-Cylinder Flows and Air–Fuel Interaction in a Direct Injection Spark Ignition Engine – A CFD Analysis
,”
Energy
,
81
, pp.
361
372
.10.1016/j.energy.2014.12.049
60.
Kosmadakis
,
G. M.
,
Rakopoulos
,
C. D.
,
Demuynck
,
J.
,
De Paepe
,
M.
, and
Verhelst
,
S.
,
2012
, “
CFD Modeling and Experimental Study of Combustion and Nitric Oxide Emissions in Hydrogen-Fueled SI Engine Operating in a Wide Range of EGR Rates
,”
Int. J. Hydrogen Energy
,
37
(
14
), pp.
10917
10934
.10.1016/j.ijhydene.2012.04.067
61.
Kosmadakis
,
G. M.
,
Rakopoulos
,
D. C.
, and
Rakopoulos
,
C. D.
,
2015
, “
Investigation of Nitric Oxide Emission Mechanisms in a SI Engine Fueled With CH4/H2 Blends Using a Research CFD Code
,”
Int. J. Hydrogen Energy
,
40
(
43
), pp.
15088
15104
.10.1016/j.ijhydene.2015.09.025
62.
Ji
,
C.
,
Liu
,
X.
,
Gao
,
B.
,
Wang
,
S.
, and
Yang
,
J.
,
2013
, “
Numerical Investigation on the Combustion Process in a Spark-Ignited Engine Fueled With Hydrogen–Gasoline Blends
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
11149
11155
.10.1016/j.ijhydene.2013.03.028
63.
Ji
,
C.
,
Liu
,
X.
,
Gao
,
B.
,
Wang
,
S.
, and
Yang
,
J.
,
2013
, “
Development and Validation of a Laminar Flame Speed Correlation for the CFD Simulation of Hydrogen-Enriched Gasoline Engines
,”
Int. J. Hydrogen Energy
,
38
(
4
), pp.
1997
2006
.10.1016/j.ijhydene.2012.11.139
64.
Metghalchi
,
M.
, and
Keck
,
J.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.10.1016/0010-2180(82)90127-4
65.
Atkins
,
R.
,
An Introduction to Engine Testing and Development
,
SAE International
, Warrendale, PA, p.
188
.
You do not currently have access to this content.