Abstract

Natural gas is a promising fuel for internal combustion (IC) engines with minimal modification, whereas its low power output and slow flame propagation speed remain a challenge for automobile manufacturers. To find a method of improving the natural gas engines, methane combustion with different additions was comparatively studied. High-speed direct photography and simultaneous pressure were performed to capture detailed combustion evolutions. First, the results of pure methane combustion confirm its good antiknock property, and no pressure oscillation occurs even there is an end-gas auto-ignition, indicating that high compression ratio and high boosting are effective ways to improve the performance of natural gas engines. Second, adding heavy hydrocarbons can greatly improve engines' power output, but engine knock should be considered if low antiknock fuel was used. Third, as a carbon-free and gaseous fuel, hydrogen addition can not only increase methane flame propagation speed but reduce cyclic variations. However, a proper fraction is needed under different load conditions. Last, oxygen-enriched combustion is an effective way to promote methane combustion. The heat release becomes faster and more concentrated, specifically, the flame propagation speed can be increased by more than 2 times under 27% oxygen concentration condition. The current study shall give insights into improving natural gas engines' performance.

References

1.
Liu
,
J. L.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Experimental Investigation of a Heavy-Duty Natural Gas Engine Performance Operated at Stoichiometric and Lean Operations
,”
Energy Convers. Manage.
,
243
, p.
114401
.10.1016/j.enconman.2021.114401
2.
Hall
,
C.
, and
Kassa
,
M.
,
2021
, “
Advances in Combustion Control for Natural Gas-Diesel Dual Fuel Compression Ignition Engines in Automotive Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
148
, p.
111291
.10.1016/j.rser.2021.111291
3.
Xu
,
H.
, and
LaPointe
,
L. A.
,
2015
, “
Combustion Characteristics of Lean Burn and Stoichiometric With Exhaust Gas Recirculation Spark-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turb. Power
,
137
(
11
), p.
111511
.10.1115/1.4030500
4.
Pipitone
,
E.
,
Beccari
,
S.
, and
Genchi
,
G.
,
2017
, “
Supercharging the Double-Fueled Spark Ignition Engine: Performance and Efficiency
,”
ASME J. Eng. Gas Turb. Power
,
139
(
10
), p.
102809
.10.1115/1.4036514
5.
Pourkhesalian
,
A. M.
,
Shamekhi
,
A. H.
, and
Salimi
,
F.
,
2010
, “
Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics
,”
Fuel
,
89
(
5
), pp.
1056
1063
.10.1016/j.fuel.2009.11.025
6.
Lee
,
J.
,
Park
,
C.
,
Bae
,
J.
,
Kim
,
Y.
,
Lee
,
S.
, and
Kim
,
C.
,
2020
, “
Comparison Between Gasoline Direct Injection and Compressed Natural Gas Port Fuel Injection Under Maximum Load Condition
,”
Energy
,
197
, p.
117173
.10.1016/j.energy.2020.117173
7.
Liu
,
J. L.
, and
Dumitrescu
,
C. E.
,
2020
, “
Optical Analysis of Flame Inception and Propagation in a Lean-Burn Natural-Gas Spark-Ignition Engine With a Bowl-in-Piston Geometry
,”
Int. J. Engine Res.
,
21
(
9
), pp.
1584
1596
.10.1177/1468087418822852
8.
Liu
,
J. L.
, and
Dumitrescu
,
C. E.
,
2020
, “
Multiple Combustion Stages Inside a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Eng. Gas Turb. Power
,
142
(
2
), p.
021018
.10.1115/1.4044492
9.
Li
,
M.
,
Wu
,
H.
,
Zhang
,
T.
,
Shen
,
B.
,
Zhang
,
Q.
, and
Li
,
Z.
,
2020
, “
A Comprehensive Review of Pilot Ignited High Pressure Direct Injection Natural Gas Engines: Factors Affecting Combustion, Emissions and Performance
,”
Renew. Sustain. Energy Rev.
,
119
, p.
109653
.10.1016/j.rser.2019.109653
10.
Zhao
,
J.
,
Ma
,
F.
,
Xiong
,
X.
,
Deng
,
J.
,
Wang
,
L.
,
Naeve
,
N.
, and
Zhao
,
S.
,
2013
, “
Effects of Compression Ratio on the Combustion and Emission of a Hydrogen Enriched Natural Gas Engine Under Different Excess Air Ratio
,”
Energy
,
59
, pp.
658
665
.10.1016/j.energy.2013.07.033
11.
Liu
,
J. P.
,
Duan
,
X. B.
,
Yuan
,
Z. P.
,
Liu
,
Q.
, and
Tang
,
Q. J.
,
2017
, “
Experimental Study on the Performance, Combustion and Emission Characteristics of a High Compression Ratio Heavy-Duty Spark-Ignition Engine Fuelled With Liquefied Methane Gas and Hydrogen Blend
,”
Appl. Therm. Eng.
,
124
, pp.
585
594
.10.1016/j.applthermaleng.2017.06.067
12.
Fu
,
J. Q.
,
Shu
,
J.
,
Zhou
,
F.
,
Liu
,
J. P.
,
Xu
,
Z. X.
, and
Zeng
,
D. J.
,
2017
, “
Experimental Investigation on the Effects of Compression Ratio on in Cylinder Combustion Process and Performance Improvement of Liquefied Methane Engine
,”
Appl. Therm. Eng.
,
113
, pp.
1208
1218
.10.1016/j.applthermaleng.2016.11.048
13.
Chen
,
L.
,
Wei
,
H.
,
Zhang
,
R.
,
Pan
,
J.
,
Zhou
,
L.
, and
Liu
,
C.
,
2019
, “
Effects of Late Injection on Lean Combustion Characteristics of Methane in a High Compression Ratio Optical Engine
,”
Fuel
,
255
, p.
115718
.10.1016/j.fuel.2019.115718
14.
Belgiorno
,
G.
,
Blasio
,
G. D.
, and
Beatrice
,
C.
,
2018
, “
Parametric Study and Optimization of the Main Engine Calibration Parameters and Compression Ratio of a Methane-Diesel Dual Fuel Engine
,”
Fuel
,
222
, pp.
821
840
.10.1016/j.fuel.2018.02.038
15.
Blasio
,
G. D.
,
Belgiorno
,
G.
, and
Beatrice
,
C.
,
2017
, “
Effects on Performances, Emissions and Particle Size Distributions of a Dual Fuel (Methane-Diesel) Light-Duty Engine Varying the Compression Ratio
,”
Appl. Energy
,
204
, pp.
726
740
.10.1016/j.apenergy.2017.07.103
16.
Gomez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2019
, “
Operation of a Spark Ignition Engine With High Compression Ratio Using Biogas Blended With Natural Gas, Propane, and Hydrogen
,”
ASME J. Eng. Gas Turb. Power
,
141
(
5
), p.
051006
.10.1115/1.4041755
17.
Yan
,
F.
,
Xu
,
L.
, and
Wang
,
Y.
,
2018
, “
Application of Hydrogen Enriched Natural Gas in Spark Ignition IC Engines: From Fundamental Fuel Properties to Engine Performances and Emissions
,”
Renew. Sustain Energy Rev.
,
82
, pp.
1457
1488
.10.1016/j.rser.2017.05.227
18.
Catapano
,
F.
,
Di Iorio
,
S.
,
Magno
,
A.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2015
, “
A Comprehensive Analysis of the Effect of Ethanol, Methane and Methane-Hydrogen Blend on the Combustion Process in a PFI (Port Fuel Injection) Engine
,”
Energy
,
88
, pp.
101
110
.10.1016/j.energy.2015.02.051
19.
Moreno
,
F.
,
Munoz
,
M.
,
Arroyo
,
J.
,
Magen
,
O.
,
Monne
,
C.
, and
Suelves
,
I.
,
2012
, “
Efficiency and Emissions in a Vehicle Spark Ignition Engine Fueled With Hydrogen and Methane Blends
,”
Int. J. Hydrogen Energy
,
37
(
15
), pp.
11495
11503
.10.1016/j.ijhydene.2012.04.012
20.
Reyes
,
M.
,
Tinaut
,
F. V.
,
Melgar
,
A.
, and
Perez
,
A.
,
2016
, “
Characterization of the Combustion Process and Cycle-to-Cycle Variations in a Spark Ignition Engine Fuelled With Natural Gas/Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
41
(
3
), pp.
2064
2074
.10.1016/j.ijhydene.2015.10.082
21.
Pipitone
,
E.
, and
Beccari
,
S.
, “
Performance Improvement of a si cng bi-Fuel Engine by Means of Double-Fuel Injection
,”
SAE
Technical Paper No. 2009-24-0058. 10.4271/2009-24-0058
22.
Wei
,
H.
,
Gao
,
D.
,
Zhou
,
L.
,
Petrakides
,
S.
,
Chen
,
R.
,
Feng
,
D.
, and
Pan
,
J.
,
2016
, “
Experimental Study on Laminar Flame Characteristics of methane-PRF95 Dual-Fuel Under Lean Burn Conditions
,”
Fuel
,
185
, pp.
254
262
.10.1016/j.fuel.2016.07.065
23.
Obiols
,
E.
,
Soleri
,
D.
, and
Dioc
,
N.
, “
Potential of Concomitant Injection of CNG and Gasoline on a 1.6 L Gasoline Direct Injection Turbocharged Engine
,”
SAE
Technical Paper No. 2011-08-30.10.4271/2011-08-30
24.
Di Iorio
,
S.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
, “
An Experimental Investigation on Combustion and Engine Performance and Emissions of a Methane-Gasoline Dual-Fuel Optical Engine
,”
SAE
Technical Paper No. 2014-01-1329.10.4271/2014-01-1329
25.
Lheywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
26.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man. Cybern. Syst.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
27.
Zheng
,
Z. Q.
,
Fang
,
X. H.
,
Liu
,
H. F.
,
Geng
,
C.
,
Yang
,
Z.
,
Feng
,
L.
,
Wang
,
Y.
, and
Yao
,
M.
,
2019
, “
Study on the Flame Development Patterns and Flame Speeds From Homogeneous Charge to Stratified Charge by Fueling n-Heptane in an Optical Engine
,”
Combust. Flame
,
199
, pp.
213
229
.10.1016/j.combustflame.2018.10.027
28.
Wei
,
H.
,
Feng
,
D.
,
Pan
,
M.
,
Pan
,
J.
,
Rao
,
X.
, and
Gao
,
D.
,
2016
, “
Experimental Investigation on the Knocking Combustion Characteristics of n-Butanol Gasoline Blends in a DISI Engine
,”
Appl. Energy
,
175
, pp.
346
355
.10.1016/j.apenergy.2016.05.029
29.
Ma
,
X.
,
Wang
,
Z.
,
Jiang
,
C. Z.
,
Jiang
,
Y. Z.
,
Xu
,
H. M.
, and
Wang
,
J. X.
,
2014
, “
An Optical Study of in-Cylinder CH2O and OH Chemiluminescence in Flame-Induced Reaction Front Propagation Using High Speed Imaging
,”
Fuel
,
134
, pp.
603
610
.10.1016/j.fuel.2014.06.002
30.
Liu
,
H.
,
Wang
,
Z.
,
Qi
,
Y.
,
He
,
X.
,
Wang
,
Y.
, and
Wang
,
J.
,
2019
, “
Experiment and Simulation Research on Super-Knock Suppression for Highly Turbocharged Gasoline Engines Using the Fuel of Methane
,”
Energy
,
182
, pp.
511
519
.10.1016/j.energy.2019.06.004
31.
Kim
,
T.
,
Song
,
J.
, and
Park
,
S. W.
,
2015
, “
Effects of Turbulence Enhancement on Combustion Process Using a Double Injection Strategy in Direct-Injection Spark-Ignition (DISI) Gasoline Engines
,”
Int. J Heat Fluid Flow
,
56
, pp.
124
136
.10.1016/j.ijheatfluidflow.2015.07.013
32.
Stephen
,
R. T.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
33.
Chen
,
L.
,
Wei
,
H.
,
Pan
,
J.
,
Liu
,
C.
, and
Shu
,
G.
,
2020
, “
Understanding the Correlation Between Auto-Ignition, Heat Release and Knocking Characteristics Through Optical Engines With High Compression Ratio
,”
Fuel
,
261
, p.
116405
.10.1016/j.fuel.2019.116405
34.
Ariono
,
D.
, and
Wardani
,
A. K.
,
2017
, “
Review of Membrane Oxygen Enrichment for Efficient Combustion
,”
J. Phys.: Conf. Ser.
,
877
, p. 012050.https://iopscience.iop.org/article/10.1088/1742-6596/877/1/012050
35.
Zhao
,
J.
,
Zhou
,
L.
,
Zhong
,
L.
,
Zhang
,
X.
,
Pan
,
J.
,
Chen
,
R.
, and
Wei
,
H.
,
2019
, “
Experimental Investigation of the Stochastic Nature of End-Gas Autoignition With Detonation Development in Confined Combustion Chamber
,”
Combust Flame
,
210
, pp.
324
338
.10.1016/j.combustflame.2019.08.040
You do not currently have access to this content.