Abstract

The design and operation of premixers for gas turbines must deal with the possibility of relatively rare events causing dangerous autoignition (AI). Rare AI events may occur in the presence of fluctuations of operational parameters, such as temperature and fuel composition, and must be understood and predicted. This work presents a methodology based on incompletely stirred reactor (ISR) and surrogate modeling to increase efficiency and feasibility in premixer design optimization for rare events. For a representative premixer, a space-filling design is used to sample the variability of three influential operational parameters. An ISR is reconstructed and solved in a postprocessing fashion for each sample, leveraging a well-resolved computational fluid dynamics solution of the non-reacting flow inside the premixer. Via detailed chemistry and reduced computational costs, ISR tracks the evolution of AI precursors and temperature conditioned on a mixture fraction. Accurate surrogate models are then trained for selected AI metrics on all ISR samples. The final quantification of the AI probability is achieved by querying the surrogate models via Monte Carlo sampling of the random parameters. The approach is fast and reliable so that user-controllable, independent variables can be optimized to maximize system performance while observing a constraint on the allowable probability of AI.

References

1.
Jella
,
S.
,
Bourque
,
G.
,
Gauthier
,
P.
,
Versailles
,
P.
,
Bergthorson
,
J.
,
Park
,
J.-W.
,
Lu
,
T.
,
Panigrahy
,
S.
, and
Curran
,
H.
,
2021
, “
Analysis of Auto-Ignition Chemistry in Aeroderivative Premixers at Engine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111024
.10.1115/1.4051460
2.
Mastorakos
,
E.
,
Baritaud
,
T.
, and
Poinsot
,
T.
,
1997
, “
Numerical Simulations of Autoignition in Turbulent Mixing Flows
,”
Combust. Flame
,
109
(
1–2
), pp.
198
223
.10.1016/S0010-2180(96)00149-6
3.
Markides
,
C.
, and
Mastorakos
,
E.
,
2005
, “
An Experimental Study of Hydrogen Autoignition in a Turbulent co-Flow of Heated Air
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
883
891
.10.1016/j.proci.2004.08.024
4.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
5.
Xiouris
,
C.
,
Ye
,
T.
,
Jayachandran
,
J.
, and
Egolfopoulos
,
F.
,
2016
, “
Laminar Flame Speeds Under Engine-Relevant Conditions: Uncertainty Quantification and Minimization in Spherically Expanding Flame Experiments
,”
Combust. Flame
,
163
, pp.
270
283
.10.1016/j.combustflame.2015.10.003
6.
Zhang
,
Y.
,
Jeanson
,
M.
,
Mével
,
R.
,
Chen
,
Z.
, and
Chaumeix
,
N.
,
2021
, “
Tailored Mixture Properties for Accurate Laminar Flame Speed Measurement From Spherically Expanding Flames: Application to h2/o2/n2/he Mixtures
,”
Combust. Flame
,
231
, p.
111487
.10.1016/j.combustflame.2021.111487
7.
Prager
,
J.
,
Najm
,
H.
,
Sargsyan
,
K.
,
Safta
,
C.
, and
Pitz
,
W.
,
2013
, “
Uncertainty Quantification of Reaction Mechanisms Accounting for Correlations Introduced by Rate Rules and Fitted Arrhenius Parameters
,”
Combust. Flame
,
160
(
9
), pp.
1583
1593
.10.1016/j.combustflame.2013.01.008
8.
Ji
,
W.
,
Wang
,
J.
,
Zahm
,
O.
,
Marzouk
,
Y.
,
Yang
,
B.
,
Ren
,
Z.
, and
Law
,
C.
,
2018
, “
Shared Low-Dimensional Subspaces for Propagating Kinetic Uncertainty to Multiple Outputs
,”
Combust. Flame
,
190
, pp.
146
157
.10.1016/j.combustflame.2017.11.021
9.
Lipardi
,
A.
,
Versailles
,
P.
,
Watson
,
G.
,
Bourque
,
G.
, and
Bergthorson
,
J.
,
2017
, “
Experimental and Numerical Study on Nox Formation in ch4–Air Mixtures Diluted With Exhaust Gas Components
,”
Combust. Flame
,
179
, pp.
325
337
.10.1016/j.combustflame.2017.02.009
10.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R.
,
2019
, “
Uncertainty Quantification of NOx and CO Emissions in a Swirl-Stabilized Burner
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p. 101014.10.1115/1.4044204
11.
Iavarone
,
S.
,
Bertolino
,
A.
,
Cafiero
,
M.
, and
Parente
,
A.
,
2022
, “
Combined Effect of Experimental and Kinetic Uncertainties on No Predictions in Low-Pressure Premixed Laminar h2/ch4/co-Air and h2/ch4/co/c6h6-Air Flames
,”
Fuel
,
320
, p.
123800
.10.1016/j.fuel.2022.123800
12.
Oh
,
M.-S.
, and
Berger
,
J.
,
1992
, “
Adaptive Importance Sampling in Monte Carlo Integration
,”
J. Stat. Comput. Simul.
,
41
(
3–4
), pp.
143
168
.10.1080/00949659208810398
13.
Wouters
,
J.
, and
Bouchet
,
F.
,
2016
, “
Rare Event Computation in Deterministic Chaotic Systems Using Genealogical Particle Analysis
,”
J. Phys. A: Math. Theory
,
49
(
37
), p.
374002
.10.1088/1751-8113/49/37/374002
14.
Bouchet
,
F.
,
Rolland
,
J.
, and
Wouters
,
J.
,
2019
, “
Rare Event Sampling Methods
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
29
(
8
), p.
080402
.10.1063/1.5120509
15.
Ziehn
,
T.
, and
Tomlin
,
A. S.
,
2008
, “
A Global Sensitivity Study of Sulfur Chemistry in a Premixed Methane Flame Model Using Hdmr
,”
Int. J. Chem. Kinetics
,
40
(
11
), pp.
742
753
.10.1002/kin.20367
16.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.10.1146/annurev.fluid.010908.165248
17.
Iavarone
,
S.
,
Oreluk
,
J.
,
Smith
,
S.
,
Hegde
,
A.
,
Li
,
W.
,
Packard
,
A.
,
Frenklach
,
M.
,
Smith
,
P.
,
Contino
,
F.
, and
Parente
,
A.
,
2018
, “
Application of Bound-to-Bound Data Collaboration Approach for Development and Uncertainty Quantification of a Reduced Char Combustion Model
,”
Fuel
,
232
, pp.
769
779
.10.1016/j.fuel.2018.05.113
18.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R.
,
2021
, “
Bayesian Inference and Uncertainty Quantification for Hydrogen-Enriched and Lean-Premixed Combustion Systems
,”
Int. J. Hydrogen Energy
,
46
(
46
), pp.
23927
23942
.10.1016/j.ijhydene.2021.04.153
19.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R.
,
2017
, “
Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2017-64271
.10.1115/GT2017-64271
20.
Smith
,
N.
,
1994
, “
Development of the Conditional Moment Closure Method for Modelling Turbulent Combustion,” Ph.D.
thesis,
University of Sydney
, Sydney, Australia.
21.
Mobini
,
K.
,
1998
, “
An investigation of the Imperfectly Stirred Reactor Modelling of Recirculating Combustion Flows,” Ph.D.
thesis,
University of Sydney
, Sydney, Australia.
22.
Mobini
,
K.
, and
Bilger
,
R.
,
2004
, “
Imperfectly Stirred Reactor Model Predictions of Reaction in a Burner With Strong Recirculation
,”
Combust. Sci. Technol.
,
176
(
1
), pp.
45
70
.10.1080/00102200490255334
23.
Mobini
,
K.
, and
Bilger
,
R.
,
2009
, “
Parametric Study of the Incompletely Stirred Reactor Modeling
,”
Combust. Flame
,
156
(
9
), pp.
1818
1827
.10.1016/j.combustflame.2009.06.017
24.
Klimenko
,
A.
, and
Bilger
,
R.
,
1999
, “
Conditional Moment Closure for Turbulent Combustion
,”
Prog. Energy Combustion Science
,
25
(
6
), pp.
595
687
.10.1016/S0360-1285(99)00006-4
25.
Gough
,
A.
,
Mobini
,
K.
,
Chen
,
Y.
, and
Bilger
,
R.
,
1998
, “
Measurements and Predictions in a Confined Bluff-Body Burner Modeled as an Imperfectly Stirred Reactor
,”
Proc. Combust. Inst.
,
27
(
2
), pp.
3181
3188
.10.1016/S0082-0784(98)80181-1
26.
Trivedi
,
S.
,
Gkantonas
,
S.
,
Wright
,
Y.
,
Parravicini
,
M.
,
Barro
,
C.
, and
Mastorakos
,
E.
,
2021
, “
Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine
,”
SAE
Paper No. 2021-24-0041.10.4271/2021-24-0041
27.
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2019
, “
Incompletely Stirred Reactor Network Modelling for Soot Emissions Prediction in Aero-Engine Combustors
,”
Proceedings of the International Workshop on Clean Combustion: Principles and Applications
, Darmstadt, Germany, Sept. 25–26.https://www.researchgate.net/publication/336587888_Incompletely_Stirred_Reactor_Network_Modelling_for_Soot_Emissions_Prediction_in_Aero-Engine_Combustors
28.
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Incompletely Stirred Reactor Network Modeling of a Model Gas Turbine Combustor
,”
AIAA
Paper No. 2020-2087.10.2514/6.2020-2087
29.
Gkantonas
,
S.
,
Foale
,
J.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Soot Emission Simulations of a Single Sector Model Combustor Using Incompletely Stirred Reactor Network Modeling
,”
ASME J. Eng. Gas Turbines Power
,
142
(
10
), p.
101007
.10.1115/1.4048408
30.
Gkantonas
,
S.
,
2021
, “
Predicting Soot Emissions with Advanced Turbulent Reacting Flow Modelling,” Ph.D.
thesis,
University of Cambridge
, Cambridge, UK.
31.
Iavarone
,
S.
,
Gkantonas
,
S.
, and
Mastorakos
,
E.
,
2022
, “
Incompletely Stirred Reactor Network Modeling for the Estimation of Turbulent Non-Premixed Autoignition
,”
28th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)
, Naples, Italy, June 19–24, Paper No. 51.
32.
Iavarone
,
S.
,
Gkantonas
,
S.
, and
Mastorakos
,
E.
,
2022
, “
Stochastic Low-Order Modelling of Hydrogen Autoignition in a Turbulent Non-Premixed Flow
,”
Proceedings of the Combustion Institute
, 39.10.1016/j.proci.2022.07.129
33.
Gkantonas
,
S.
,
Jella
,
S.
,
Iavarone
,
S.
,
Versailles
,
P.
,
Mastorakos
,
E.
, and
Bourque
,
G.
,
2022
, “
Estimations of Autoignition Propensity in Aeroderivative Gas Turbine Premixers Using Incompletely Stirred Reactor Network Modelling
,”
ASME J. Eng. Gas Turbines Power
, 144(10), p. 101009.10.1115/1.4055273
34.
Jones
,
W.
, and
Navarro-Martinez
,
S.
,
2008
, “
Study of Hydrogen Auto-Ignition in a Turbulent Air co-Flow Using a Large Eddy Simulation Approach
,”
Comput. Fluids
,
37
(
7
), pp.
802
808
.10.1016/j.compfluid.2007.02.015
35.
Stanković
,
I.
,
Triantafyllidis
,
A.
,
Mastorakos
,
E.
,
Lacor
,
C.
, and
Merci
,
B.
,
2011
, “
Simulation of Hydrogen Auto-Ignition in a Turbulent co-Flow of Heated Air With LES and CMC Approach
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
689
710
.10.1007/s10494-010-9277-0
36.
Navarro-Martinez
,
S.
, and
Kronenburg
,
A.
,
2011
, “
Flame Stabilization Mechanisms in Lifted Flames
,”
Flow, Turbul. Combust.
,
87
(
2–3
), pp.
377
406
.10.1007/s10494-010-9320-1
37.
Buckrell
,
A. J. M.
, and
Devaud
,
C. B.
,
2013
, “
Investigation of Mixing Models and Conditional Moment Closure Applied to Autoignition of Hydrogen Jets
,”
Flow, Turbul. Combust.
,
90
(
3
), pp.
621
644
.10.1007/s10494-013-9445-0
38.
Chen
,
J.-Y.
,
1997
, “
Stochastic Modeling of Partially Stirred Reactors
,”
Combust. Sci. Technol.
,
122
(
1–6
), pp.
63
94
.10.1080/00102209708935605
39.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
40.
Mortensen
,
M.
,
2005
, “
Consistent Modeling of Scalar Mixing for Presumed, Multiple Parameter Probability Density Functions
,”
Phys. Fluids
,
17
(
1
), p.
018106
.10.1063/1.1829311
41.
Devaud
,
C. B.
,
Bilger
,
R. W.
, and
Liu
,
T.
,
2004
, “
A New Method of Modeling the Conditional Scalar Dissipation Rate
,”
Phys. Fluids
,
16
(
6
), pp.
2004
2011
.10.1063/1.1699108
42.
Brown
,
P.
, and
Hindmarsh
,
A.
,
1989
, “
Reduced Storage Matrix Methods in Stiff ODE Systems
,”
Appl. Math. Comput.
,
31
, pp.
40
91
.10.1016/0096-3003(89)90110-0
43.
O'Brien
,
E.
, and
Jiang
,
T.
,
1991
, “
The Conditional Dissipation Rate of an Initially Binary Scalar in Homogeneous Turbulence
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
12
), pp.
3121
3123
.10.1063/1.858127
44.
Wright
,
Y.
,
Depaola
,
G.
,
Boulouchos
,
K.
, and
Mastorakos
,
E.
,
2005
, “
Simulations of Spray Autoignition and Flame Establishment With Two-Dimensional CMC
,”
Combust. Flame
,
143
(
4
), pp.
402
419
.10.1016/j.combustflame.2005.08.022
45.
Scarinci
,
T.
,
Freeman
,
C.
, and
Day
,
I.
,
2004
, “
Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine
,”
ASME
Paper No. GT2004-53767.10.1115/GT2004-53767
46.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
47.
Jiménez
,
C.
,
Ducros
,
F.
,
Cuenot
,
B.
, and
Bédat
,
B.
,
2001
, “
Subgrid Scale Variance and Dissipation of a Scalar Field in Large Eddy Simulations
,”
Phys. Fluids
,
13
(
6
), pp.
1748
1754
.10.1063/1.1366668
48.
Branley
,
N.
, and
Jones
,
W.
,
2001
, “
Large Eddy Simulation of a Turbulent Non-Premixed Flame
,”
Combust. Flame
,
127
(
1–2
), pp.
1914
1934
.10.1016/S0010-2180(01)00298-X
49.
Garmory
,
A.
, and
Mastorakos
,
E.
,
2011
, “
Capturing Localised Extinction in Sandia Flame F With LES-CMC
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1673
1680
.10.1016/j.proci.2010.06.065
50.
Sitte
,
M. P.
,
Turquand d'Auzay
,
C.
,
Giusti
,
A.
,
Mastorakos
,
E.
, and
Chakraborty
,
N.
,
2020
, “
A-Priori Validation of Scalar Dissipation Rate Models for Turbulent Non-Premixed Flames
,”
Flow, Turbul. Combust.
, 107(1), pp.
201
218
.10.1007/s10494-020-00218-x
51.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
52.
Hassanaly
,
M.
, and
Raman
,
V.
,
2021
, “
Classification and Computation of Extreme Events in Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
87
, p.
100955
.10.1016/j.pecs.2021.100955
53.
Rasmussen
,
C.
, and
Williams
,
C.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
, Cambridge, MA.10.7551/mitpress/3206.001.0001
54.
Ju
,
Y.
,
Reuter
,
C.
,
Yehia
,
O.
,
Farouk
,
T.
, and
Won
,
S.
,
2019
, “
Dynamics of Cool Flames
,”
Prog. Energy Combust. Sci.
,
75
, p.
100787
.10.1016/j.pecs.2019.100787
You do not currently have access to this content.