Abstract

In this paper, we investigate the effect of strong azimuthal swirl on ignition dynamics in a laboratory-scale annular combustor. Bulk azimuthal swirl was produced by a novel angled injector configuration, producing swirling jet flames oriented downwards toward the combustor backplane and in the azimuthal direction, replicating a simplified version of the SAFRAN spinning combustor concept. To provide more realistic flow conditions, the design included rich-quench-lean (RQL) staging via a circumferential distribution of dilution ports and an effusion cooled combustor backplane. High-speed imaging and an azimuthal array of photomultipliers to measure OH* chemiluminescence were used to characterize the ignition dynamics for different injector velocities and global equivalence ratios. The mass flows through the injectors, dilution ports, and effusion cooled backplane were independently metered so that the injector equivalence ratio and global equivalence ratio could be separately controlled. The light-around times were found to have no clear correlation with the injector velocity since the rich injector equivalence ratio meant the flame burned in a nonpremixed mode even though the global equivalence ratio was lean due to the RQL staging. However, it was found that lower injector velocities extended the lean ignition limit based on the global equivalence ratio. The ignition sequence during light-around (order in which the injectors are ignited) was found to be highly repeatable, igniting each consecutive injector in the anticlockwise direction (the direction of bulk swirl). In rare cases, the ignition sequence was observed to branch in both directions. Finally, in an effort to extend the lean ignition limit, the effect of azimuthal staging was investigated. Two configurations were tested. In the first configuration, the injectors on one half of the annulus were operated at a fixed equivalence ratio whereas the other half of the annulus was operated at a different equivalence ratio. In the second configuration, every second injector had the same equivalence ratio. Both configurations extended the lean extinction limit but the first configuration was the most effective.

References

1.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
2.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Berat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
3.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
4.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
5.
Bach
,
E.
,
Kariuki
,
J.
,
Dawson
,
J. R.
,
Mastorakos
,
E.
, and
Bauer
,
H.-J.
,
2013
, “
Spark Ignition of Single Bluff-Body Premixed Flames and Annular Combustors
,”
AIAA
Paper No. 2013-1182.10.2514/6.2013-1182
6.
Ciardiello
,
R.
,
de Oliveira
,
P. M.
,
Skiba
,
A. W.
,
Mastorakos
,
E.
, and
Allison
,
P. M.
,
2020
, “
Effect of Spark Location and Laminar Flame Speed on the Ignition Transient of a Premixed Annular Combustor
,”
Combust. Flame
,
221
, pp.
296
310
.10.1016/j.combustflame.2020.08.001
7.
Machover
,
E.
, and
Mastorakos
,
E.
,
2016
, “
Spark Ignition of Annular Non-Premixed Combustors
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
64
70
.10.1016/j.expthermflusci.2015.09.008
8.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.10.1016/j.proci.2016.08.008
9.
Vignat
,
G.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2020
, “
Combustion Dynamics of Annular Systems
,”
Combust. Sci. Technol.
,
192
(
7
), pp.
1358
1388
.10.1080/00102202.2020.1734583
10.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Schmitt
,
T.
,
Durox
,
D.
,
Bourgouin
,
J.-F.
, and
Candel
,
S.
,
2015
, “
Simulation of the Ignition Process in an Annular Multiple-Injector Combustor and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031501
.10.1115/1.4028265
11.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Schmitt
,
T.
,
Cuenot
,
B.
,
Durox
,
D.
, and
Candel
,
S.
,
2015
, “
Large Eddy Simulations of the Ignition Sequence of an Annular Multiple-Injector Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3159
3166
.10.1016/j.proci.2014.07.008
12.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2018
, “
Large Eddy Simulation of Light-Round in an Annular Combustor With Liquid Spray Injection and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021504
.10.1115/1.4037827
13.
Puggelli
,
S.
,
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2020
, “
Impact of Wall Temperature in Large Eddy Simulation of Light-Round in an Annular Liquid Fueled Combustor and Assessment of Wall Models
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011018
.10.1115/1.4045341
14.
Machover
,
E.
, and
Mastorakos
,
E.
,
2017
, “
Experimental Investigation on Spark Ignition of Annular Premixed Combustors
,”
Combust. Flame
,
178
, pp.
148
157
.10.1016/j.combustflame.2017.01.013
15.
Ye
,
C.
,
Wang
,
G.
,
Fang
,
Y.
,
Ma
,
C.
,
Zhong
,
L.
, and
Moreau
,
S.
,
2018
, “
Ignition Dynamics in an Annular Combustor With Gyratory Flow Motion
,”
ASME
Paper No. GT2018-76624.10.1115/GT2018-76624
16.
Wang
,
G.
,
Zhong
,
L.
,
Yang
,
Y.
,
Zheng
,
Y.
,
Fang
,
Y.
,
Xia
,
Y.
, and
Ye
,
C.
,
2021
, “
Experimental Investigation of the Ignition Dynamics in an Annular Premixed Combustor With Oblique-Injecting Swirling Burners
,”
Fuel
,
287
, p.
119494
.10.1016/j.fuel.2020.119494
17.
Xia
,
Y.
,
Linghu
,
C.
,
Zheng
,
Y.
,
Ye
,
C.
,
Ma
,
C.
,
Ge
,
H.
, and
Wang
,
G.
,
2019
, “
Experimental Investigation of the Flame Front Propagation Characteristic During Light-Round Ignition in an Annular Combustor
,”
Flow, Turbul. Combust.
,
103
(
1
), pp.
247
269
.10.1007/s10494-019-00018-y
18.
Mellor
,
A.
,
1990
,
Design of Modern Turbine Combustors
,
Academic Press
,
San Diego, CA
.
19.
Ebi
,
D.
,
Doll
,
U.
,
Schulz
,
O.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2019
, “
Ignition of a Sequential Combustor: Evidence of Flame Propagation in the Autoignitable Mixture
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5013
5020
.10.1016/j.proci.2018.06.068
20.
Ding
,
G.
,
He
,
X.
,
Zhao
,
Z.
,
An
,
B.
,
Song
,
Y.
, and
Zhu
,
Y.
,
2014
, “
Effect of Dilution Holes on the Performance of a Triple Swirler Combustor
,”
Chin. J. Aeronaut.
,
27
(
6
), pp.
1421
1429
.10.1016/j.cja.2014.10.008
21.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
22.
Blanc
,
M.
,
Guest
,
P.
,
von Elbe
,
G.
, and
Lewis
,
B.
,
1948
, “
Ignition of Explosive Gas Mixtures by Electric Sparks: III. Minimum Ignition Energies and Quenching Distances of Mixtures of Hydrocarbons and Ether With Oxygen and Inert Gases
,”
Symp. Combust. Flame Explos. Phenom.
,
3
(
1
), pp.
363
367
.10.1016/S1062-2896(49)80044-4
You do not currently have access to this content.