Abstract

The ignition process of spray flame in a methane environment was studied using large eddy simulation. By comparing the combustion process of n-dodecane spray (single fuel, SF) and n-dodecane/methane dual fuels (DF), the effect of methane addition on the low- and high-temperature ignition was investigated. Results showed that although the ignition delay times (IDTs) for the SF and DF cases are very similar, methane in the ambient gas mainly prolongs the time interval between the low- and high-temperature combustion for the DF case. A high gas temperature of 900 K can increase the reactivity and promote the early oxidization of n-dodecane. Thus, the formation of formaldehyde appears very early at 900 K. Then, the interactions between the early oxidation process of methane and the multistage ignition process of spray are investigated. By delaying the n-dodecane injection timing, different active environments including intermediate radicals are created, which can delay or even shorten the ignition process of n-dodecane spray depending on the gas temperature. However, the formation of formaldehyde is less dependent on the injection timing at low temperatures, indicating that methane has a negligible influence on the onset of low-temperature reactions. But at high temperatures, the early oxidation process in methane increases the gas temperature, which plays the dominant role in shortening the IDT.

References

1.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Optical Analysis of Flame Inception and Propagation in a Lean-Burn Natural-Gas Spark-Ignition Engine With a Bowl-in-Piston Geometry
,”
Int. J. Engine Res.
,
21
(
9
), pp.
1584
1596
.10.1177/1468087418822852
2.
Wang
,
Z.
,
Fu
,
X.
,
Wang
,
D.
,
Xu
,
Y.
,
Du
,
G.
, and
You
,
J.
,
2021
, “
A Multilevel Study on the Influence of Natural Gas Substitution Rate on Combustion Mode and Cyclic Variation in a Diesel/Natural Gas Dual Fuel Engine
,”
Fuel
,
294
, p.
120499
.10.1016/j.fuel.2021.120499
3.
Park
,
H.
,
Wright
,
Y. M.
,
Seddik
,
O.
,
Srna
,
A.
,
Kyrtatos
,
P.
, and
Boulouchos
,
K.
,
2021
, “
Phenomenological Micro-Pilot Ignition Model for Medium-Speed Dual-Fuel Engines
,”
Fuel
,
285
, p.
118955
.10.1016/j.fuel.2020.118955
4.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Analysis of Two-Stage Natural-Gas Lean Combustion Inside a Diesel Geometry
,”
Appl. Therm. Eng.
,
160
, p.
114116
.10.1016/j.applthermaleng.2019.114116
5.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion Inside a Diesel Geometry
,”
Energy Convers. Manage.
,
195
, pp.
21
31
.10.1016/j.enconman.2019.04.091
6.
Srna
,
A.
,
Bolla
,
M.
,
Wright
,
Y. M.
,
Herrmann
,
K.
,
Bombach
,
R.
,
Pandurangi
,
S. S.
,
Boulouchos
,
K.
, and
Bruneaux
,
G.
,
2019
, “
Effect of Methane on Pilot-Fuel Auto-Ignition in Dual-Fuel Engines
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4741
4749
.10.1016/j.proci.2018.06.177
7.
Liu
,
J. L.
, and
Dumitrescu
,
C. E.
,
2020
, “
Multiple Combustion Stages Inside a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Eng. Gas Turbines Power-Trans.
,
142
(
2
), p.
021018
.10.1115/1.4044492
8.
Lahane
,
S.
, and
Subramanian
,
K. A.
,
2014
, “
Impact of Nozzle Holes Configuration on Fuel Spray, Wall Impingement and NOx Emission of a Diesel Engine for Biodiesel–Diesel Blend (B20)
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
307
314
.10.1016/j.applthermaleng.2013.12.048
9.
Zhong
,
S.
,
Xu
,
S.
,
Bai
,
X.-S.
,
Peng
,
Z.
, and
Zhang
,
F.
,
2021
, “
Large Eddy Simulation of n-Heptane/Syngas Pilot Ignition Spray Combustion: Ignition Process, Liftoff Evolution and Pollutant Emissions
,”
Energy
,
233
, p.
121080
.10.1016/j.energy.2021.121080
10.
Tekgül
,
B.
,
Kahila
,
H.
,
Karimkashi
,
S.
,
Kaario
,
O.
,
Ahmad
,
Z.
,
Lendormy
,
É.
,
Hyvönen
,
J.
, and
Vuorinen
,
V.
,
2021
, “
Large-Eddy Simulation of Spray Assisted Dual-Fuel Ignition Under Reactivity-Controlled Dynamic Conditions
,”
Fuel
,
293
, p.
120295
.10.1016/j.fuel.2021.120295
11.
Tekgül
,
B.
,
Kahila
,
H.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2020
, “
Large-Eddy Simulation of Dual-Fuel Spray Ignition at Different Ambient Temperatures
,”
Combust. Flame
,
215
, pp.
51
65
.10.1016/j.combustflame.2020.01.017
12.
Wei
,
H.
,
Zhao
,
W.
,
Qi
,
J.
,
Liu
,
Z.
, and
Zhou
,
L.
,
2019
, “
Effect of Injection Timing on the Ignition Process of n-Heptane Spray Flame in a Methane/Air Environment
,”
Fuel
,
245
, pp.
345
359
.10.1016/j.fuel.2019.02.086
13.
Zhao
,
W.
,
Zhou
,
L.
,
Liu
,
Z.
,
Qi
,
J.
,
Lu
,
Z.
,
Wei
,
H.
, and
Shu
,
G.
,
2021
, “
Numerical Study on the Combustion Process of n-Heptane Spray Flame in Methane Environment Using Large Eddy Simulation
,”
Combust. Sci. Technol.
,
193
(
1
), pp.
142
166
.10.1080/00102202.2019.1655404
14.
Millo
,
F.
,
Accurso
,
F.
,
Piano
,
A.
,
Caputo
,
G.
,
Cafari
,
A.
, and
Hyvönen
,
J.
,
2021
, “
Experimental and Numerical Investigation of the Ignition Process in a Large Bore Dual Fuel Engine
,”
Fuel
,
290
, p.
120073
.10.1016/j.fuel.2020.120073
15.
Srna
,
A.
,
von Rotz
,
B.
,
Herrmann
,
K.
,
Boulouchos
,
K.
, and
Bruneaux
,
G.
,
2019
, “
Experimental Investigation of Pilot-Fuel Combustion in Dual-Fuel Engines, Part 1: Thermodynamic Analysis of Combustion Phenomena
,”
Fuel
,
255
, p.
115642
.10.1016/j.fuel.2019.115642
16.
Rajasegar
,
R.
,
Niki
,
Y.
,
Li
,
Z.
,
García-Oliver
,
J. M.
, and
Musculus
,
M. P. B.
,
2021
, “
Influence of Pilot-Fuel Mixing on the Spatio-Temporal Progression of Two-Stage Autoignition of Diesel-Sprays in Low-Reactivity Ambient Fuel-Air Mixture
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5741
5750
.10.1016/j.proci.2020.11.005
17.
Kahila
,
H.
,
Wehrfritz
,
A.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2019
, “
Large-Eddy Simulation of Dual-Fuel Ignition: Diesel Spray Injection Into a Lean Methane-Air Mixture
,”
Combust. Flame
,
199
, pp.
131
151
.10.1016/j.combustflame.2018.10.014
18.
Kahila
,
H.
,
Kaario
,
O.
,
Ahmad
,
Z.
,
Ghaderi Masouleh
,
M.
,
Tekgül
,
B.
,
Larmi
,
M.
, and
Vuorinen
,
V.
,
2019
, “
A Large-Eddy Simulation Study on the Influence of Diesel Pilot Spray Quantity on Methane-Air Flame Initiation
,”
Combust. Flame
,
206
, pp.
506
521
.10.1016/j.combustflame.2019.05.025
19.
Kannan
,
J.
,
Gadalla
,
M.
,
Tekgul
,
B.
,
Karimkashi
,
S.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2021
, “
Large-Eddy Simulation of Tri-Fuel Ignition: Diesel Spray-Assisted Ignition of Lean Hydrogen-Methane-Air Mixtures
,”
Combust. Theory Model.
,
25
(
3
), pp.
436
459
.10.1080/13647830.2021.1887525
20.
Kannan
,
J.
,
Gadalla
,
M.
,
Tekgul
,
B.
,
Karimkashi
,
S.
,
Kaario
,
O.
, and
Vuorinen
,
V.
, “
Large Eddy Simulation of Diesel Spray-Assisted Dual-Fuel Ignition: A Comparative Study on Two n-Dodecane Mechanisms at Different Ambient Temperatures
,”
Int. J. Engine Res.
, pp.
2521
2532
.10.1177/1468087420946551
21.
Pickett
,
L. M.
,
2012
, “
Engine Combustion Network
,” Sandia National Laboratories, Albuquerque, NM, accessed Sept. 6, 2022, https://ecn.sandia.gov/
22.
Payri
,
R.
,
Gimeno
,
J.
,
Carreres
,
M.
, and
Montiel
,
T.
,
2021
, “
Understanding the Effect of Inter-Jet Spacing on Lift-Off Length and Ignition Delay
,”
Combust. Flame
,
230
, p.
111423
.10.1016/j.combustflame.2021.111423
23.
Wei
,
H.
,
Zhao
,
W.
,
Zhou
,
L.
,
Chen
,
C.
, and
Shu
,
G.
,
2018
, “
Large Eddy Simulation of the Low Temperature Ignition and Combustion Processes on Spray Flame With the Linear Eddy Model
,”
Combust. Theory Model.
,
22
(
2
), pp.
237
263
.10.1080/13647830.2017.1392044
24.
Zhao
,
W.
,
Zhou
,
L.
,
Qin
,
W.
, and
Wei
,
H.
,
2019
, “
Large Eddy Simulation of Multiple-Stage Ignition Process of n-Heptane Spray Flame
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081019
.10.1115/1.4043429
25.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE Int.
, pp.
27
43
.10.4271/980131
26.
O'Rourke
,
P. J.
,
1981
, “
Collective Drop Effects on Vaporizing Liquid Sprays
,”
Ph.D. thesis, Pinceton University, Princeton, NJ
.
27.
Zhao
,
W.
,
Wei
,
H.
,
Jia
,
M.
,
Lu
,
Z.
,
Luo
,
K. H.
,
Chen
,
R.
, and
Zhou
,
L.
,
2019
, “
Flame–Spray Interaction and Combustion Features in Split-Injection Spray Flames Under Diesel Engine-Like Conditions
,”
Combust. Flame
,
210
, pp.
204
221
.10.1016/j.combustflame.2019.08.031
28.
Zhao
,
W.
,
Zhou
,
L.
,
Qi
,
J.
, and
Wei
,
H.
,
2020
, “
The Influence of Intermediate Species on the Combustion Process of n-Dodecane Flame
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
234
(
2–3
), pp.
334
348
.10.1177/0954407019858279
29.
Wei
,
H.
,
Zhao
,
W.
,
Zhou
,
L.
, and
Shu
,
G.
,
2018
, “
Numerical Investigation of Diesel Spray Flame Structures Under Diesel Engine-Relevant Conditions Using Large Eddy Simulation
,”
Combust. Sci. Technol.
,
190
(
5
), pp.
909
932
.10.1080/00102202.2017.1417270
30.
Zhou
,
L.
,
Luo
,
K. H.
,
Qin
,
W.
,
Jia
,
M.
, and
Shuai
,
S. J.
,
2015
, “
Large Eddy Simulation of Spray and Combustion Characteristics With Realistic Chemistry and High-Order Numerical Scheme Under Diesel Engine-Like Conditions
,”
Energy Convers. Manage.
,
93
, pp.
377
387
.10.1016/j.enconman.2015.01.033
31.
Yao
,
T.
,
Pei
,
Y.
,
Zhong
,
B.-J.
,
Som
,
S.
,
Lu
,
T.
, and
Luo
,
K. H.
,
2017
, “
A Compact Skeletal Mechanism for n-Dodecane With Optimized Semi-Global Low-Temperature Chemistry for Diesel Engine Simulations
,”
Fuel
,
191
, pp.
339
349
.10.1016/j.fuel.2016.11.083
32.
Fernandez
,
S. F.
,
Paul
,
C.
,
Sircar
,
A.
,
Imren
,
A.
,
Haworth
,
D. C.
,
Roy
,
S.
, and
Modest
,
M. F.
,
2018
, “
Soot and Spectral Radiation Modeling for High-Pressure Turbulent Spray Flames
,”
Combust. Flame
,
190
, pp.
402
415
.10.1016/j.combustflame.2017.12.016
33.
Bolla
,
M.
,
Chishty
,
M. A.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2017
, “
Modeling Combustion Under Engine Combustion Network Spray a Conditions With Multiple Injections Using the Transported Probability Density Function Method
,”
Int. J. Engine Res.
,
18
(
1–2
), pp.
6
14
.10.1177/1468087416689174
34.
Chishty
,
M. A.
,
Bolla
,
M.
,
Hawkes
,
E. R.
,
Pei
,
Y.
, and
Kook
,
S.
,
2018
, “
Soot Formation Modelling for n-Dodecane Sprays Using the Transported PDF Model
,”
Combust. Flame
,
192
, pp.
101
119
.10.1016/j.combustflame.2018.01.028
35.
Kim
,
N.
,
Jung
,
K.
, and
Kim
,
Y.
,
2018
, “
Multi-Environment PDF Modeling for n-Dodecane Spray Combustion Processes Using Tabulated Chemistry
,”
Combust. Flame
,
192
, pp.
205
220
.10.1016/j.combustflame.2018.02.004
36.
Petersen
,
E. L.
,
Röhrig
,
M.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
,
1996
, “
High-Pressure Methane Oxidation Behind Reflected Shock Waves
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
799
806
.10.1016/S0082-0784(96)80289-X
37.
Reaction Design
,
2013
,
Reaction Design Chemkin-Pro 15131
, Reaction Design,
San Diego, CA
.
38.
Zhao
,
W.
,
Wei
,
H.
,
Zhou
,
L.
, and
Lu
,
Z.
,
2021
, “
LES Study on the Interaction Between the Local Flow and Flame Structure in Multi-Injection of n-Dodecane
,”
Fuel
,
285
, p.
119214
.10.1016/j.fuel.2020.119214
39.
Bekdemir
,
C.
,
Somers
,
L. M. T.
,
de Goey
,
L. P. H.
,
Tillou
,
J.
, and
Angelberger
,
C.
,
2013
, “
Predicting Diesel Combustion Characteristics With Large-Eddy Simulations Including Tabulated Chemical Kinetics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3067
3074
.10.1016/j.proci.2012.06.160
40.
Xu
,
S.
,
Zhong
,
S.
,
Pang
,
K. M.
,
Yu
,
S.
,
Jangi
,
M.
, and
Bai
,
X.-s.
,
2020
, “
Effects of Ambient Methanol on Pollutants Formation in Dual-Fuel Spray Combustion at Varying Ambient Temperatures: A Large-Eddy Simulation
,”
Appl. Energy
,
279
, p.
115774
.10.1016/j.apenergy.2020.115774
41.
Irannejad
,
A.
,
Banaeizadeh
,
A.
, and
Jaberi
,
F.
,
2015
, “
Large Eddy Simulation of Turbulent Spray Combustion
,”
Combust. Flame
,
162
(
2
), pp.
431
450
.10.1016/j.combustflame.2014.07.029
42.
Gong
,
C.
,
Jangi
,
M.
,
Lucchini
,
T.
,
D'Errico
,
G.
, and
Bai
,
X.-S.
,
2014
, “
Large Eddy Simulation of Air Entrainment and Mixing in Reacting and Non-Reacting Diesel Sprays
,”
Flow Turbul. Combust.
,
93
(
3
), pp.
385
404
.10.1007/s10494-014-9566-0
43.
Zhong
,
S.
,
Zhang
,
F.
,
Du
,
Q.
, and
Peng
,
Z.
,
2020
, “
Characteristics of Reactivity Controlled Combustion With n-Heptane Low Temperature Reforming Products
,”
Fuel
,
275
, p.
117980
.10.1016/j.fuel.2020.117980
44.
Desantes
,
J. M.
,
Pastor
,
J. V.
,
García-Oliver
,
J. M.
, and
Briceño
,
F. J.
,
2014
, “
An Experimental Analysis on the Evolution of the Transient Tip Penetration in Reacting Diesel Sprays
,”
Combust. Flame
,
161
(
8
), pp.
2137
2150
.10.1016/j.combustflame.2014.01.022
45.
Maes
,
N.
,
Meijer
,
M.
,
Dam
,
N.
,
Somers
,
B.
,
Baya Toda
,
H.
,
Bruneaux
,
G.
,
Skeen
,
S. A.
,
Pickett
,
L. M.
, and
Manin
,
J.
,
2016
, “
Characterization of Spray a Flame Structure for Parametric Variations in ECN Constant-Volume Vessels Using Chemiluminescence and Laser-Induced Fluorescence
,”
Combust. Flame
,
174
, pp.
138
151
.10.1016/j.combustflame.2016.09.005
46.
Ihme
,
M.
,
Ma
,
P. C.
, and
Bravo
,
L.
,
2019
, “
Large Eddy Simulations of Diesel-Fuel Injection and Auto-Ignition at Transcritical Conditions
,”
Int. J. Engine Res.
,
20
(
1
), pp.
58
68
.10.1177/1468087418819546
47.
Xu
,
S.
,
Zhong
,
S.
,
Hadadpour
,
A.
,
Zhang
,
Y.
,
Pang
,
K. M.
,
Jangi
,
M.
,
Fatehi
,
H.
, and
Bai
,
X.-S.
,
2022
, “
Large-Eddy Simulation of the Injection Timing Effects on the Dual-Fuel Spray Flame
,”
Fuel
,
310
, p.
122445
.10.1016/j.fuel.2021.122445
48.
Wang
,
H.
,
Ra
,
Y.
,
Jia
,
M.
, and
Reitz
,
R. D.
,
2014
, “
Development of a Reduced n-dodecane-PAH Mechanism and Its Application for n-Dodecane Soot Predictions
,”
Fuel
,
136
, pp.
25
36
.10.1016/j.fuel.2014.07.028
49.
Pei
,
Y.
,
Hawkes
,
E. R.
,
Bolla
,
M.
,
Kook
,
S.
,
Goldin
,
G. M.
,
Yang
,
Y.
,
Pope
,
S. B.
, and
Som
,
S.
,
2016
, “
An Analysis of the Structure of an n-Dodecane Spray Flame Using TPDF Modelling
,”
Combust. Flame
,
168
, pp.
420
435
.10.1016/j.combustflame.2015.11.034
You do not currently have access to this content.