Abstract

Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of organic Rankine cycle (ORC) and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively, if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35% and 46% and the primary energy saving (PES) value range between 10% and 22%. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.

References

1.
Valentini
,
E.
,
Bhargava
,
R. K.
,
Bianchi
,
M.
,
DePascale
,
A.
, and
Peretto
,
A.
, “
Thermo-Economic Evaluation of ORC System in Off-Shore Applications
,”
ASME
Paper No. GT2014-25170.10.1115/GT2014-25170
2.
Campana
,
F.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Peretto
,
A.
,
Baresi
,
M.
,
Fermi
,
A.
,
Rossetti
,
N.
, and
Vescovo
,
R.
,
2013
, “
ORC Waste Heat Recovery in European Energy Intensive Industries: Energy and GHG Savings
,”
Energy Convers. Manag.
,
76
, pp.
244
252
.10.1016/j.enconman.2013.07.041
3.
Redko
,
A.
,
Redko
,
O.
, and
DiPippo
,
R.
,
2020
, “
9—Industrial Waste Heat Resources
,”
In Low-Temperature Energy Systems With Applications of Renewable Energy
,
Academic Press
, Cambridge, MA, pp.
329
362
.
4.
Hedman
,
B. A.
,
2008
, “
Waste Energy Recovery Opportunities for Interstate Natural Gas Pipelines
,” Report for Interstate Natural Gas Association of America (INGAA), Washington, DC.
5.
Turboden S.p.a.,
2020
, “
ORC Plants for Oil & Gas Stations
,”
TURBODEN, Brescia, Italy, accessed Oct. 14, 2020, https://www.turboden.com/solutions/1054/oil-gas, https://www.turboden.com/solutions/2603/combined-cycles
6.
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
,
Torricelli
,
N.
,
Kurz
,
R.
,
Sanchez
,
D.
,
Rossetti
,
N.
, and
Ferrari
,
T.
,
2020
,“
Optimal Load Allocation of Compressor Drivers Taking Advantage of Organic Rankine Cycle as WHR Solution
,”
ASME
Paper No. GT2020-14466.10.1115/GT2020-14466
7.
Yu
,
A.
,
Su
,
W.
,
Lin
,
X.
, and
Zhou
,
N.
,
2020
, “
Recent Trends of Supercritical CO2 Brayton Cycle: Bibliometric Analysis and Research Review
,”
Nucl. Eng. Technol.
, 53(3), pp.
699
714
.10.1016/j.net.2020.08.005
8.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
, 135(4), p.
041007
.10.1115/1.4024030
9.
Syblik
,
J.
,
Vesely
,
L.
,
Entler
,
S.
,
Stepanek
,
J.
, and
Dostal
,
V.
,
2019
, “
Analysis of Supercritical CO2 Brayton Power Cycles in Nuclear and Fusion Energy
,”
Fusion Eng. Des.
,
146
, pp.
1520
1523
.10.1016/j.fusengdes.2019.02.119
10.
Park
,
S.
,
Kim
,
J.
,
Yoon
,
M.
,
Rhim
,
D.
, and
Yeom
,
C.
,
2018
, “
Thermodynamic and Economic Investigation of Coal-Fired Power Plant Combined With Various Supercritical CO2 Brayton Power Cycle
,”
Appl. Therm. Eng.
,
130
, pp.
611
623
.10.1016/j.applthermaleng.2017.10.145
11.
Zhou
,
A.
,
Li
,
X-S.
,
Ren
,
X-D.
, and
Gu
,
C-W.
,
2020
, “
Improvement Design and Analysis of a Supercritical CO2/Transcritical CO2 Combined Cycle for Offshore Gas Turbine Waste Heat Recovery
,”
Energy
,
210
, p.
118562
.10.1016/j.energy.2020.118562
12.
Held
,
T. J.
,
2014
, “
Initial Test Results of a MegaWatt-Class Supercritical CO2 Heat Engine
,”
Fourth International Symposium—Supercrtical CO2 Power Cycles
, Pittsburgh, PA, Sept.
9
10
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.724.7458&rep=rep1&type=pdf
13.
Liu
,
Y.
,
Wang
,
Y.
, and
Huang
,
D.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.10.1016/j.energy.2019.115900
14.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.10.1016/j.energy.2018.07.099
15.
Yoon
,
S. Y.
,
Kim
,
M. J.
,
Kim
,
I. S.
, and
Kim
,
T. S.
,
2017
, “
Comparison of Micro Gas Turbine Heat Recovery Systems Using ORC and Trans-Critical CO2 Cycle Focusing on Off-Design Performance
,”
Energy Procedia
,
129
, pp.
987
994
.10.1016/j.egypro.2017.09.223
16.
Thermoflex 28.0,
2017
,
Thermoflow Inc.
, Jacksonville, FL.
17.
Crespi
,
F.
,
Sanchez
,
D.
,
Gavagnin
,
G.
, and
Martinez
,
G. S.
,
2018
, “
Analysis of the Thermodynamic Potential of Supercritical Carbon Dioxide Cycles: A Systematic Approach
,”
ASME J. Eng. Gas Turbines Power
, 140(5), p.
051701
.10.1115/1.4038125
18.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
, 2020,
REFPROP 10.0 Standard Reference Database 23
,
National Institute of Standards and Technology
,
Boulder, CO
.
19.
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
,
Archetti
,
D.
,
Campana
,
F.
,
Ferrari
,
T.
, and
Rossetti
,
N.
,
2019
, “
Feasibility of ORC Application in Natural Gas Compressor Stations
,”
Energy
,
173
, pp.
1
15
.10.1016/j.energy.2019.01.127
20.
Bhargava
,
R. K.
,
Bianchi
,
M.
,
Branchini
,
L.
,
Pascale
,
A. D.
, and
Orlandini
,
V.
,
2015
, “
Organic Rankine Cycle System for Effective Energy Recovery in Offshore Applications: A Parametric Investigation With Different Power Rating Gas Turbines
,”
ASME
Paper No. GT2015-42292.10.1115/GT2015-42292
21.
Ahn
,
Y.
,
Lee
,
J.
,
Kim
,
S. G.
,
Lee
,
J. I.
,
Cha
,
J. E.
, and
Lee
,
S.-W.
,
2015
, “
Design Consideration of Supercritical CO2 Power Cycle Integral Experiment Loop
,”
Energy
,
86
, pp.
115
127
.10.1016/j.energy.2015.03.066
22.
Official Journal of the European Union
,
2004
, “
Directive 2004/08/EC of the European Parliament and of the Council, Official Journal of the European Union
,” Official Journal of the European Union, accessed Aug. 23, 2021, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri\celex:32004L0008
23.
Green
,
D. D. W.
, and
Southard
,
D. M. Z.
,
2019
,
Perry's Chemical Engineers' Handbook
, 9th ed.,
McGraw-Hill Education
, New York.
24.
Macchi
,
E.
, and
Astolfi
,
M.
,
2017
,
Organic Rankine cycle (ORC) Power Systems: Technologies and Applications
, Woodhead Publishing Series in Energy,
Woodhead Publishing is an Imprint of Elsevier
,
Duxford; Cambridge, MA; Kidlington
.
25.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium–Low Temperature Geothermal Sources—Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
.10.1016/j.energy.2013.11.057
26.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
, “
SCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
ASME
Paper No. GT2019-90493.10.1115/GT2019-90493
You do not currently have access to this content.