Abstract

To achieve high thermal efficiency and low emission in automobile engines, advanced combustion technologies using compression auto-ignition of premixtures have been studied, and model-based control has attracted attention for their practical applications. Although simplified physical models have been developed for model-based control, appropriate values for their model parameters vary depending on the operating conditions, engine driving environment, and engine aging. Herein, we studied an onboard adaptation method of model parameters in a heat release rate (HRR) model. This method adapts the model parameters using neural networks considering the operating conditions and can respond to the driving environment and the engine aging by training the neural networks onboard. Detailed studies were conducted regarding the training methods. Compared to when the model parameters were set as constants, this adaptation method significantly improved the prediction accuracy of the HRR model. Furthermore, control tests on an engine bench showed that this adaptation method also improved the model-based control accuracy of the HRR.

References

1.
Ishiyama
,
T.
, and
Horibe
,
N.
,
2012
, “
Characteristics and Problems of Diesel-Base PCCI Combustion
,”
Mar. Eng. J. Jpn. Inst. Mar. Eng.
,
47
(
6
), pp.
859
864
.10.5988/jime.47.859
2.
Epping
,
K.
,
Aceves
,
S.
,
Bechtold
,
R.
, and
Dec
,
J. E.
,
2002
, “
The Potential of HCCI Combustion for High Efficiency and Low Emissions
,”
SAE
Technical Paper No. 2002-01-1923.10.4271/2002-01-1923
3.
Pan
,
W.
,
Korkmaz
,
M.
,
Beeckmann
,
J.
, and
Pitsch
,
H.
,
2020
, “
Nonlinear Identification Modeling for PCCI Engine Emissions Prediction Using Unsupervised Learning and Neural Networks
,”
SAE
Technical Paper No. 2020-01-0558.10.4271/2020-01-0558
4.
Yaşar
,
H.
,
Çağıl
,
G.
,
Torkul
,
O.
, and
Şişci
,
M.
,
2021
, “
Cylinder Pressure Prediction of an HCCI Engine Using Deep Learning
,”
Chin. J. Mech. Eng.
,
34
(
1
).10.1186/s10033-020-00525-4
5.
Taghavi
,
M.
,
Gharehghani
,
A.
,
Nejad
,
F. B.
, and
Mirsalim
,
M.
,
2019
, “
Developing a Model to Predict the Start of Combustion in HCCI Engine Using ANN-GA Approach
,”
Energy Convers. Manag.
,
195
, pp.
57
69
.10.1016/j.enconman.2019.05.015
6.
Rezaei
,
J.
,
Shahbakhti
,
M.
,
Bahri
,
B.
, and
Aziz
,
A. A.
,
2015
, “
Performance Prediction of HCCI Engines With Oxygenated Fuels Using Artificial Neural Networks
,”
Appl. Energy
,
138
, pp.
460
473
.10.1016/j.apenergy.2014.10.088
7.
Drews
,
P.
,
Albin
,
T.
,
Heßeler
,
F.-J.
,
Peters
,
N.
, and
Abel
,
D.
,
2011
, “
Fuel-Efficient Model-Based Optimal MIMO Control for PCCI Engines
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
12998
13003
.10.3182/20110828-6-IT-1002.01138
8.
Makowicki
,
T.
,
Bitzer
,
M.
,
Grodde
,
S.
, and
Graichen
,
K.
,
2017
, “
Cycle-by-Cycle Optimization of the Combustion During Transient Engine Operation
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
11046
11051
.10.1016/j.ifacol.2017.08.2485
9.
Ravi
,
N.
,
Roelle
,
M.
,
Jungkunz
,
A.
, and
Gerdes
,
J.
,
2006
, “
A Physically Based Two-State Model for Controlling Exhaust Recompression HCCI in Gasoline Engines
,”
ASME
Paper No. IMECE2006-15331.10.1115/IMECE2006-15331
10.
Yasuda
,
K.
,
Yamasaki
,
Y.
,
Kaneko
,
S.
,
Nakamura
,
Y.
,
Iida
,
N.
, and
Hasegawa
,
R.
,
2016
, “
Diesel Combustion Model for on-Board Application
,”
Int. J. Engine Res.
,
17
(
7
), pp.
748
765
.10.1177/1468087415611331
11.
Hillion
,
M.
,
Chauvin
,
J.
, and
Petit
,
N.
,
2011
, “
Control of Highly Diluted Combustion in Diesel Engines
,”
Control Eng. Pract.
,
19
(
11
), pp.
1274
1286
.10.1016/j.conengprac.2011.06.006
12.
Jade
,
S.
,
Larimore
,
J.
,
Hellstrom
,
E.
,
Stefanopoulou
,
A. G.
, and
Jiang
,
L.
,
2015
, “
Controlled Load and Speed Transitions in a Multicylinder Recompression HCCI Engine
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
868
881
.10.1109/TCST.2014.2346992
13.
Yamasaki
,
Y.
,
Ikemura
,
R.
,
Takahashi
,
M.
,
Shimizu
,
F.
, and
Kaneko
,
S.
,
2019
, “
Simple Combustion Model for a Diesel Engine With Multiple Fuel Injections
,”
Int. J. Engine Res.
,
20
(
2
), pp.
167
180
.10.1177/1468087417742764
14.
Yamasaki
,
Y.
,
Ikemura
,
R.
, and
Kaneko
,
S.
,
2018
, “
Model-Based Control of Diesel Engines With Multiple Fuel Injections
,”
Int. J. Engine Res.
,
19
(
2
), pp.
257
265
.10.1177/1468087417747738
15.
Yamasaki
,
Y.
,
Ikemura
,
R.
,
Takahashi
,
M.
,
Kaneko
,
S.
, and
Uemichi
,
A.
,
2019
, “
Multiple-Input Multiple-Output Control of Diesel Combustion Using a Control-Oriented Model
,”
Int. J. Engine Res.
,
20
(
10
), pp.
1005
1016
.10.1177/1468087418820739
16.
Takahashi
,
M.
,
Yamasaki
,
Y.
,
Kaneko
,
S.
,
Fujii
,
S.
,
Mizumoto
,
I.
,
Hayashi
,
T.
,
Asahi
,
T.
, and
Hirata
,
M.
,
2019
, “
Model-Based Control System for Advanced Diesel Combustion
,”
IFAC-PapersOnLine
,
52
(
5
), pp.
171
177
.10.1016/j.ifacol.2019.09.028
17.
Grasreiner
,
S.
,
Neumann
,
J.
,
Wensing
,
M.
, and
Hasse
,
C.
,
2017
, “
Model-Based Virtual Engine Calibration With the Help of Phenomenological Methods for Spark-Ignited Engines
,”
Appl. Therm. Eng.
,
121
(
C
), pp.
190
199
.10.1016/j.applthermaleng.2017.04.046
18.
Wlodarczyk
,
M. T.
,
2006
, “
High Accuracy Glow Plug-Integrated Cylinder Pressure Sensor for Closed Loop Engine Control
,”
SAE
Technical Paper No. 2006-01-0184.10.4271/2006-01-0184
19.
Hellemans
,
A.
,
Landrevie
,
L.
,
Venzal
,
S.
, and
Walker
,
E.
,
2011
, “
In-Cylinder Pressure Sensor
,”
MTZ Worldwide
,
72
(
10
), pp.
42
48
.10.1365/s38313-011-0100-7
20.
Tamaki
,
S.
,
Sakayanagi
,
Y.
,
Sekiguchi
,
K.
,
Ibuki
,
T.
,
Tahara
,
K.
, and
Sampei
,
M.
,
2014
, “
On-Line Feedforward Map Generation for Engine Ignition Timing Control
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
5691
5696
.10.3182/20140824-6-ZA-1003.01886
21.
Gao
,
J.
,
Zhang
,
Y.
, and
Shen
,
T.
,
2017
, “
An on-Board Calibration Scheme for Map-Based Combustion Phase Control of Spark-Ignition Engines
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1485
1496
.10.1109/TMECH.2017.2696788
22.
Willems
,
R.
,
Willems
,
F.
,
Deen
,
N.
, and
Somers
,
B.
,
2021
, “
Heat Release Rate Shaping for Optimal Gross Indicated Efficiency in a Heavy-Duty RCCI Engine Fueled With E85 and Diesel
,”
Fuel
,
288
, p.
119656
.10.1016/j.fuel.2020.119656
23.
Okamoto
,
T.
, and
Uchida
,
N.
,
2016
, “
New Concept for Overcoming the Trade-Off Between Thermal Efficiency, Each Loss and Exhaust Emissions in a Heavy Duty Diesel Engine
,”
SAE Int. J. Engines
,
9
(
2
), pp.
859
867
.10.4271/2016-01-0729
24.
Shibata
,
G.
,
Nakayama
,
D.
,
Okamoto
,
Y.
, and
Ogawa
,
H.
,
2016
, “
Diesel Engine Combustion Noise Reduction by the Control of Timings and Heating Values in Two Stage High Temperature Heat Releases
,”
SAE Int. J. Engines
,
9
(
2
), pp.
868
882
.10.4271/2016-01-0731
25.
Fuyuto
,
T.
,
Taki
,
M.
,
Ueda
,
R.
,
Hattori
,
Y.
,
Kuzuyama
,
H.
, and
Umehara
,
T.
,
2014
, “
Noise and Emissions Reduction by Second Injection in Diesel PCCI Combustion With Split Injection
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1900
1910
.10.4271/2014-01-2676
26.
Livengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
5th International Symposium on Combustion
, Pittsburgh, PA, pp.
347
356
.10.1016/S0082-0784(55)80047-1
27.
Cao
,
J.
,
Takahashi
,
M.
,
Yamasaki
,
Y.
, and
Kaneko
,
S.
,
2019
, “
Online Automatic Adaptation for Model-Based Control of Diesel Engine
,”
SAE
Paper No. 2019-01-2320.10.4271/2019-01-2320
28.
Cao
,
J.
,
Kim
,
J.
,
Takahashi
,
M.
, and
Yamasaki
,
Y.
,
2020
, “
Model Based Control With Online Automatic Adaptation by Neural Network for Advanced Diesel Combustion
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
14040
14046
.10.1016/j.ifacol.2020.12.932
29.
Rumelhart
,
D.
,
Hinton
,
G.
, and
Williams
,
R.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.10.1038/323533a0
30.
Kolen
,
J. F.
, and
Pollack
,
J. B.
,
1991
, “
Back Propagation is Sensitive to Initial Conditions
,”
Advances in Neural Information Processing Systems
, Vol.
3
,
R. P.
Lippmann
,
J. E.
Moody
, and
D. S.
Touretzky
, eds.,
Morgan-Kaufmann
, San Francisco, CA, pp.
860
867
.
31.
Sutskever
,
I.
,
Martens
,
J.
,
Dahl
,
G.
, and
Hinton
,
G.
,
2013
, “
On the Importance of Initialization and Momentum in Deep Learning
,”
Proceedings of the 30th International Conference on Machine Learning
,
S.
Dasgupta
and
D.
McAllester
, eds., Atlanta, GA, June 16–21, pp.
1139
1147
.https://proceedings.mlr.press/v28/sutskever13.html
32.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
13th International Conference on Artificial Intelligence and Statistics
, Sardinia, Italy, May 13–15, pp.
249
256
.https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
You do not currently have access to this content.