Abstract

Fans used in tunnel ventilation operate for decades in an atmosphere that carries dust, soot, and other solid particles. The formation of deposit on the rotor blades, considering a so long time of exposition to this particle-laden flow, is highly probable. A not negligible quantity of deposited material can produce damages on the performance of the fan, but also mass unbalancing, which is potentially dangerous for the structural integrity of the fan components. We applied our simulation tool to study a case of deposition on a large axial fan blade, used for tunnel ventilation. The outcome of the study is a parametric map of fouled blade geometries, obtained by simulating the deposition process over the increasing quantity of ingested particles mixture. The final map correlates the level and shape of deposit to the overall amount of particle ingested by the fan in its operating life. The same map can be easily used to predict the time needed in a specific application to reach any specific deposit thickness. The evolution algorithm and simulation tools developed in the past years by the authors were applied to predict the modified geometry of eroded rotor blades. Here, the same framework is updated to simulate the deposit problem. We use an integrated multiphase solver, coupled with a geometry update method. The solver can iteratively simulate the flow field, compute the particle tracking, dispersion, and deposit processes, and modify the geometry (and mesh) according to the predicted deposit shape and rate.

References

1.
Sheard
,
A. G.
, and
Corsini
,
A.
,
2011
, “
The Impact of an Anti-Stall Stabilisation Ring on Industrial Fan Performance: Implications for Fan Selection
,”
ASME
Paper No. GT2011-45187.10.1115/GT2011-45187
2.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2013
, “
A Critical Review of Computational Methods and Their Application in Industrial Fan Design
,”
ISRN Mech. Eng.
, 2013, p.
625175
.
3.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2019
, “
Numerical Simulation of the Blade Aging Process in an Induced Draft Fan Due to Long Time Exposition to Fly Ash Particles
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011025
.10.1115/1.4041127
4.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2019
, “
Computational Analysis of Performance Deterioration of a Wind Turbine Blade Strip Subjected to Environmental Erosion
,”
Comput. Mech.
, 64(4), pp.
1133
1153
.10.1007/s00466-019-01697-0
5.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2013
, “
Numerical Simulation of Coal Fly-Ash Erosion in an Induced Draft Fan
,”
ASME J. Eng. Gas Turbine Power
,
135
(
8
), p.
081303
.10.1115/1.4024127
6.
Corsini
,
A.
,
Marchegiani
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
, and
Sheard
,
A. G.
,
2012
, “
Predicting Blade Leading Edge Erosion in an Axial Induced Draft Fan
,”
ASME J. Eng. Gas Turbine Power
,
134
(
4
), p.
042601
.10.1115/1.4004724
7.
Cardillo
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
, “
Simulation of Particle-Laden Flows in a Large Centrifugal Fan for Erosion Prediction
,”
ASME
Paper No. GT2014-25865.10.1115/GT2014-25865
8.
Cardillo
,
L.
,
Corsini
,
A.
,
Borello
,
D.
,
Delibra
,
G.
,
Salvagni
,
A.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2016
, “
Modelling of Particle Transport, Erosion and Deposition in Power Plant Gas Paths
,”
ASME
Paper No. GT2016-57984.10.1115/GT2016-57984
9.
Wang
,
Y.
,
Tan
,
H.
,
Dong
,
K.
,
Liu
,
H.
,
Xiao
,
J.
, and
Zhang
,
J.
,
2017
, “
Study of Ash Fouling on the Blade of Induced Fan in a 330 MW Coal-Fired Power Plant With Ultra-Low Pollutant Emission
,”
Appl. Therm. Eng.
,
118
, pp.
283
291
.10.1016/j.applthermaleng.2017.02.115
10.
Van Der Spuy
,
S. J.
,
Von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2011
, “
Using Computational Fluid Dynamics to Simulate Multiple Axial Flow Fans in Air-Cooled Steam Condensers
,”
ASME
Paper No. POWER2011-55057.10.1115/POWER2011-55057
11.
Louw
,
F. G.
,
Von Backström
,
T. W.
, and
Van Der Spuy
,
S. J.
,
2015
, “
Lift and Drag Characteristics of an Air-Cooled Heat Exchanger Axial Flow Fan
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
081101
.10.1115/1.4030165
12.
Louw
,
F. G.
,
Von Backström
,
T. W.
, and
Van Der Spuy
,
S. J.
,
2015
, “
Experimental Investigation of the Blade Surface Pressure Distribution in an Axial Flow Fan for a Range of Flow Rates
,”
ASME
Paper No. GT2015-43620.10.1115/GT2015-43620
13.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2018
, “
Modeling Deposition in Turbine Cooling Passages With Temperature Dependent Adhesion and Mesh Morphing
,”
ASME
Paper No. GT2018-76251.10.1115/GT2018-76251
14.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.10.1115/1.4035921
15.
Whitaker
,
S. M.
, and
Bons
,
J. P.
,
2018
, “
An Improved Particle Impact Model by Accounting for Rate of Strain and Stochastic Rebound
,”
ASME
Paper No. GT2018-77158.10.1115/GT2018-77158
16.
Yu
,
K.
, and
Tafti
,
D.
,
2017
, “
Size and Temperature Dependent Deposition Model of Micro-Sized Sand Particles
,”
ASME
Paper No. GT2017-130041.10.1115/GT2017-130041
17.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.10.1016/j.ijheatfluidflow.2014.11.008
18.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME
Paper No. GT2013-95623.10.1115/GT2013-95623
19.
Forsyth
,
P.
,
Gillespie
,
D.
, and
McGilvray
,
M.
,
2017
, “
Development and Applications of a Coupled Particle Deposition Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
ASME
Paper No. GT2017-63295.10.1115/GT2017-63295
20.
Connolly
,
J.
,
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D.
,
2018
, “
The Use of Fluid-Solid Cell Transformation to Model Volcanic Ash Deposition Within a Gas Turbine Hot Component
,”
ASME
Paper No. GT2018-76683.10.1115/GT2018-76683
21.
Casari
,
N.
,
Pinelli
,
M.
, and
Suman
,
A.
,
2018
, “
On Deposition and Build-Up Detachment in Compressor Fouling
,”
ASME
Paper No. GT2018-76776.10.1115/GT2018-76776
22.
Aldi
,
N.
,
Casari
,
N.
,
Dainese
,
D.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2018
, “
Fouling on a Multistage Axial Compressor in the Presence of a Third Substance at the Particle/Surface Interface
,”
ASME
Paper No. GT2018-76923.10.1115/GT2018-76923
23.
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2012
, “
An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor
,”
ASME J. Eng. Gas Turbine Power
,
134
(
9
), p.
092002
.10.1115/1.4006840
24.
Agati
,
G.
,
Borello
,
D.
,
Rispoli
,
F.
,
Salvagni
,
A.
, and
Venturini
,
P.
,
2017
, “
Numerical Simulation of a Particle-Laden Impinging Jet: Effect of Wall Curvature on Particle Deposition
,”
ASME
Paper No. GT2017-64629.10.1115/GT2017-64629
25.
Borello
,
D.
,
D'Angeli
,
L.
,
Salvagni
,
A.
,
Venturini
,
P.
, and
Rispoli
,
F.
, “
Study of Particle Deposition in Gas Turbine Blades in Presence of Film Cooling
,”
ASME
Paper No. GT2014-950.10.1115/GT2014-950
26.
Birello
,
F.
,
Borello
,
D.
,
Venturini
,
P.
, and
Rispoli
,
F.
,
2013
, “
Modelling of Deposit Mechanisms Around the Stator of a Gas Turbine
,”
ASME
Paper No. GT2013-95688.10.1115/GT2013-95688
27.
Castorrini
,
A.
,
Corsini
,
A.
,
Morabito
,
F.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2017
, “
Numerical Simulation With Adaptive Boundary Method for Predicting Time Evolution of Erosion Processes
,”
ASME
Paper No. GT2017-64675.10.1115/GT2017-64675
28.
Hughes
,
T. J.
,
1995
, “
Multiscale Phenomena: Green's Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,”
Comput. Methods Appl. Mech. Eng.
,
127
(
1–4
), pp.
387
401
.10.1016/0045-7825(95)00844-9
29.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Johnson
,
A. A.
,
1992
, “
Computation of Unsteady Incompressible Flows With the Finite Element Methods—Space–Time Formulations, Iterative Strategies and Massively Parallel Implementations
,”
New Methods in Transient Analysis
,
ASME
,
New York
, pp.
7
24
.
30.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
A.
,
Johnson
,
S.
, and
Mittal
,
1993
, “
Parallel Finite-Element Computation of 3D Flows
,”
Computer
,
26
(
10
), pp.
27
36
.10.1109/2.237441
31.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
,
1994
, “
Mesh Update Strategies in Parallel Finite Element Computations of Flow Problems With Moving Boundaries and Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
119
(
1–2
), pp.
73
94
.10.1016/0045-7825(94)00077-8
32.
Castorrini
,
A.
,
Corsini
,
A.
,
Sheard
,
A. G.
, and
Rispoli
,
F.
,
2016
, “
Numerical Study on the Passive Control of the Aeroelastic Response in Large Axial Fans
,”
ASME
Paper No. GT2016-57306.10.1115/GT2016-57306
33.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Scovazzi
,
G.
,
2007
, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
1–4
), pp.
173
201
.10.1016/j.cma.2007.07.016
34.
Takizawa
,
K.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
,
2011
, “
Space–Time FSI Modeling and Dynamical Analysis of Spacecraft Parachutes and Parachute Clusters
,”
Comput. Mech.
,
48
(
3
), p.
345
.10.1007/s00466-011-0590-9
35.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid-Structure Interaction: Methods and Applications
,
Wiley
, Chichester, UK.
36.
Borello
,
D.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2003
, “
A Finite Element Overlapping Scheme for Turbomachinery Flows on Parallel Platforms
,”
Comput. Fluids
,
32
(
7
), pp.
1017
1047
.10.1016/S0045-7930(02)00034-8
37.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
(
3–4
), pp.
237
254
.10.1007/s00366-006-0049-3
38.
Rispoli
,
F.
,
Delibra
,
G.
,
Venturini
,
P.
,
Corsini
,
A.
,
Saavedra
,
R.
, and
Tezduyar
,
T. E.
,
2015
, “
Particle Tracking and Particle–Shock Interaction in Compressible-Flow Computations With the V-SGS Stabilization and YZ\Beta YZβ Shock-Capturing
,”
Comput. Mech.
,
55
(
6
), pp.
1201
1209
.10.1007/s00466-015-1160-3
39.
Baxter
,
L. L.
,
1989
, “
Turbulent Transport of Particles
,” Ph.D. thesis, Brigham Young University, Provo, UT.
40.
Wang
,
L. P.
,
1990
, “
On the Dispersion of Heavy Particles by Turbulent Motion
,” Ph.D. thesis, Washington State University, Pullman, WA.
41.
Litchford
,
L. J.
, and
Jeng
,
S. M.
,
1991
, “
Efficient Statistical Transport Model for Turbulent Particle Dispersion in Sprays
,”
AIAA J.
,
29
(
9
), p.
1443
.10.2514/3.59965
42.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2016
, “SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades,” Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology, Y. Bazilevs and K. Takizawa, eds., Birkhäuser, Cham, pp.
175
183
.10.1016/j.compfluid.2016.08.013
43.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2016
, “
SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades
,” Advances in Computational Fluid-Structure Interaction and Flow Simulation (Modeling and Simulation in Science, Engineering and Technology), Springer, Berlin, pp.
77
96
.10.1007/978-3-319-40827-9
44.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2016
, “
SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades
,”
Advances in Computational Fluid-Structure Interaction and Flow Simulation
,
Birkhäuser
,
Cham, Switzerland
pp.
77
96
.
45.
Corsini
,
A.
,
Castorrini
,
A.
,
Morei
,
E.
,
Rispoli
,
F.
,
Sciulli
,
F.
, and
Venturini
,
P.
,
2015
, “
Modeling of Rain Drop Erosion in a Multi-MW Wind Turbine
,”
ASME
Paper No. GT2015-42174.10.1115/GT2015-42174
46.
Armenio
,
V.
, and
Fiorotto
,
V.
,
2001
, “
The Importance of the Forces Acting on Particles in Turbulent Flows
,”
Phys. Fluids
,
13
(
8
), p.
2437
.10.1063/1.1385390
47.
Sommerfeld
,
M.
,
van Wachem
,
B.
, and
Oliémans
,
R.
,
2009
,
Dispersed Turbulent Multi-Phase Flow. Best Practice Guidelines
, Ercoftac.
48.
Pope
,
S. B.
,
2001
, “
Turbulent Flows
,” Cambridge University Press, Cornell University, New York.
49.
Smith
,
P. J.
,
1994
, “
3-D Turbulent Particle Dispersion Submodel Development
,” Quarterly Progress Report No. 3, Oct. 15, 1991-Jan. 15, 1992 (No. DOE/PC/90094-T3), Department of Chemical Engineering, Utah University, Salt Lake City, UT.
50.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for Stick/Bounce Behaviour of Adhesive, Elastic-Plastic Spheres
,”
Powder Technol.
,
99
(
2
), pp.
154
162
.10.1016/S0032-5910(98)00099-0
51.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
52.
Venturini
,
P.
,
2010
, “
Particle-Wall Interaction in Two-Phase Gas-Solid Flows
,” Ph.D. dissertation, Sapienza University of Rome, Rome, Italy.
53.
van Beek
,
M. C.
,
2001
, “
Gas-Side Fouling in Heat-Recovery Boilers
,” Ph.D. thesis, Technische Universiteit Eindhoven, The Netherlands.
54.
Rogers
,
L. N.
, and
Reed
,
J.
,
1984
, “
The Adhesion of Particles Undergoing an Elastic-Plastic With a Surface
,”
J. Phys. D
,
17
(
4
), pp.
677
689
.10.1088/0022-3727/17/4/007
55.
Agati
,
G.
,
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2016
, “
A New Approach to Model Temperature Influence on Particle Deposition in Gas Turbines
,”
ASME
Paper No. GT2016-57997.10.1115/GT2016-57997
56.
Venturini
,
P.
,
Borello
,
D.
,
Hanjalić
,
K.
, and
Rispoli
,
F.
,
2012
, “
Modelling of Particles Deposition in an Environment Relevant to Solid Fuel Boilers
,”
Appl. Therm. Eng.
,
49
, pp.
131
138
.10.1016/j.applthermaleng.2011.08.030
57.
Castorrini
,
A.
,
Corsini
,
A.
,
Sheard
,
A. G.
, and
Rispoli
,
F.
,
2018
, “
Numerical Testing of a Trailing Edge Passive Morphing Control for Large Axial Fan Blades
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032606
.10.1115/1.4037921
58.
Hung-Lung
,
C.
, and
Yao-Sheng
,
H.
,
2009
, “
Particulate Matter Emissions From On-Road Vehicles in a Freeway Tunnel Study
,”
Atmos. Environ.
,
43
(
26
), pp.
4014
4022
.10.1016/j.atmosenv.2009.05.015
You do not currently have access to this content.