Abstract

The gas wave ejector (GWE) is an efficient gas wave equipment using pressure waves to realize energy exchange. In this paper, a theoretical analysis of the limitation of application range and the factors affecting the performance of GWE was carried out by numerical simulation. And a complete experimental system including an adjustable GWE was employed to obtain the specific performance values in various working conditions. Such theoretical analysis showed that the device became inapplicable with a relatively high driving pressure ratio, resulting from the generation of supersonic flow at the outlet end of the passages. A relatively high supercharging ratio also limited the equipment application because of the weakening of the reflected expansion waves and the enhancement of the reversed compression wave. Furthermore, the mixing, vortex, viscosity, and other flow losses could also affect the equipment performance. Then, a complete performance map indicating the specific performance values in the application range was obtained by plenty of experiments. The performance map proved that GWE had excellent efficiency and broad applicability especially as the driving pressure ratio was lower than 2.6. The results are significant for practical application and performance improvement of GWE.

References

1.
Liu
,
S. Q.
,
Wang
,
X. X.
,
Fan
,
L. L.
,
Han
,
Q. H.
, and
Ye
,
L.
,
2013
, “
A New Technique of Supercharging by Ejectors and Compressors in the Jingbian Gas Field, Ordos Basin
,”
Nat. Gas Ind.
,
33
(
5
), pp.
96
99
.10.3787/j.issn.1000-0976.2013.05.018
2.
Wu
,
G. S.
,
Zhong
,
D. T.
,
Liu
,
S. Q.
,
Yan
,
J. J.
, and
Liu
,
J. P.
,
2009
, “
Experimental Investigation of Efficient Injector of Low Pressure Natural Gas
,”
J. Eng. Therm.
,
30
(
6
), pp.
974
976
. http://jetp.iet.cn/EN/Y2009/V30/I6/974
3.
Tashtoush
,
B. M.
,
Al-Nimr
,
M. D. A.
, and
Khasawneh
,
M. A.
,
2019
, “
A Comprehensive Review of Ejector Design, Performance, and Applications
,”
Appl. Energy
,
240
, pp.
138
172
.10.1016/j.apenergy.2019.01.185
4.
Tao
,
S.
,
Dai
,
Y.
,
Zou
,
J.
, and
Zhao
,
D.
,
2017
, “
Characteristics of Static Pre-Cyclonic Steam Ejector
,”
Int. J Therm. Sci.
,
120
, pp.
244
251
.10.1016/j.ijthermalsci.2017.06.009
5.
Elbel
,
S.
, and
lawrence
,
N.
,
2016
, “
Review of Recent Developments in Advanced Ejector Technology
,”
Int. J. Refrig.
,
62
, pp.
1
18
.10.1016/j.ijrefrig.2015.10.031
6.
Liu
,
F.
, and
Groll
,
E. A.
,
2013
, “
Study of Ejector Efficiencies in Refrigeration Cycles
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
360
370
.10.1016/j.applthermaleng.2012.12.001
7.
Zhu
,
Y.
, and
Jiang
,
P.
,
2014
, “
Bypass Ejector With an Annular Cavity in the Nozzle Wall to Increase the Entrainment: Experimental and Numerical Validation
,”
Energy
,
68
, pp.
174
181
.10.1016/j.energy.2014.02.046
8.
Hu
,
D.
,
Yu
,
Y.
, and
Liu
,
P.
,
2018
, “
Enhancement of Refrigeration Performance by Energy Transfer of Shock Wave
,”
Appl. Therm. Eng.
,
130
, pp.
309
318
.10.1016/j.applthermaleng.2017.11.040
9.
Hu
,
D.
,
Li
,
R.
,
Liu
,
P.
, and
Zhao
,
J.
,
2016
, “
The Design and Influence of Port Arrangement on an Improved Wave Rotor Refrigerator Performance
,”
Appl. Therm. Eng.
,
107
, pp.
207
217
.10.1016/j.applthermaleng.2016.06.168
10.
Dai
,
Y.
,
Zou
,
J.
,
Zhu
,
C.
,
Liu
,
P.
,
Zhao
,
J.
,
Zhang
,
L.
, and
Hu
,
D.
,
2010
, “
Thermodynamic Analysis of Wave Rotor Refrigerators
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
2
), p.
021011
.10.1115/1.4002756
11.
Fatsis
,
A.
, and
Ribaud
,
Y.
,
1999
, “
Thermodynamic Analysis of Gas Turbines Topped With Wave Rotors
,”
Aerosp. Sci. Technol.
, 3(5), pp.
293
299
.10.1016/S1270-9638(00)86965-5
12.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.10.1115/1.2204628
13.
Chan
,
S.
,
Liu
,
H.
, and
Xing
,
F.
,
2016
, “
Defining the Thermodynamic Efficiency in a Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112601
.10.1115/1.4033508
14.
Chan
,
S.
,
Liu
,
H.
,
Xing
,
F.
, and
Hang
,
S.
,
2018
, “
Wave Rotor Design Method With Three Steps Including Experimental Validation
,”
ASME J. Eng. Gas Turbines. Power
,
140
(
11
), p.
111201
.10.1115/1.4038815
15.
Zhao
,
W.
,
Hu
,
D.
,
Liu
,
P.
,
Dai
,
Y.
,
Zou
,
J.
,
Zhu
,
C.
, and
Zhao
,
J.
,
2012
, “
The Port Width and Position Determination for Gas Wave Ejector
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
) p.
064502
.10.1115/1.4005982
16.
Spalding
,
D. B.
,
1958
, “
A Note on Pressure Equalizers and Dividers
,” Power Jets (Research and Development) Ltd., 1958, No. 2251/Px 3.
17.
Kentfield
,
J. A. C.
,
1969
, “
The Performance of Pressure-Exchange Dividers and Equalizers
,”
J. Basic Eng.
,
91
(
3
), pp.
361
370
.10.1115/1.3571118
18.
Kentfield
,
J. A. C.
,
1963
, “
An Examination of the Performance of Pressure-Exchanger Equalisers and Dividers
,” Ph. D dissertation, University of London, Imperial College of Science and Technology, London.
19.
Wilson
,
J.
,
1998
, “
An Experimental Determination of Losses in a Three-Port Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
833
842
.10.1115/1.2818476
20.
Sharma
,
K.
,
2008
, “
Preliminary Design Approach to the First Generation Internal Combustion Wave Disc Engine
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
21.
Kharazi Amir
,
A.
,
Pezhman
,
A.
, and
Müller
,
N.
,
2006
, “
Implementation of 3-Port Condensing Wave Rotors in R718 Cycles
,”
ASME J. Eng. Resour. Technol.
,
128
(
4
), pp.
325
334
.10.1115/1.2131886
22.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
,
2005
, “
Preliminary Study of a Novel R718 Compression Refrigeration Cycle Using a Three-Port Condensing Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
539
544
.10.1115/1.1850503
23.
Zhao
,
W.
,
Hu
,
D.
,
Liu
,
P.
,
Dai
,
Y.
,
Rong
,
C.
, and
Zhao
,
J.
,
2012
, “
Influence of Port Angle on Performance of Gas Wave Ejector and Prediction for Optimal Angle
,”
CIESC J.
,
63
(
2
), pp.
572
577
.10.3969/j.issn.0438-1157.2012.02.033
24.
Zhao
,
W.
,
2012
, “
Examination of the Flow and Ejecting Performance of Pressure Oscillating Tube
,” Ph.D. dissertation, Dalian University of Technology, Dalian, China.
25.
Menter
,
F.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Appl. Sci. Res.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
26.
Bai
,
J.
,
Wang
,
C.
, and
Zhang
,
Y.
,
2014
, “
Application of a Turbulence Model Based on Von Karmen Length Scale in Steady and Unsteady Flow Simulation
,”
Eng. Mech.
,
31
(
11
), pp.
39
45
.10.6052/j.issn.1000-4750.2013.05.0416
27.
Kurec
,
K.
,
Piechna
,
J.
, and
Gumowski
,
K.
,
2017
, “
Investigations on Unsteady Flow Within a Stationary Passage of a Pressure Wave Exchanger, by Means of PIV Measurements and CFD Calculations
,”
Appl. Therm. Eng.
,
112
, pp.
610
620
.10.1016/j.applthermaleng.2016.10.142
28.
Okamoto
,
K.
, and
Nagashima
,
T.
,
2007
, “
Visualization of Wave Rotor Inner Flow Dynamics
,”
J. Propul. Power
,
23
(
2
), pp.
292
300
.10.2514/1.18439
29.
Lamberts
,
O.
,
Chatelain
,
P.
,
Bourgeois
,
N.
, and
Bartosiewicz
,
Y.
,
2018
, “
The Compound-Choking Theory as an Explanation of the Entrainment Limitation in Supersonic Ejectors
,”
Energy
,
158
, pp.
524
536
.10.1016/j.energy.2018.06.036
30.
Hu
,
D.
,
Li
,
R.
,
Liu
,
P.
, and
Zhao
,
J.
,
2016
, “
The Loss in Charge Process and Effects on Performance of Wave Rotor Refrigerator
,”
Int. J Heat Mass Transfer
,
100
, pp.
497
507
.10.1016/j.ijheatmasstransfer.2016.04.084
31.
Bulusu
,
K. V.
,
Gould
,
D. M.
, and
Garris
,
C. A.
,
2008
,
Evaluation of Efficiency in Compressible Flow Ejectors
,
ASME Press
,
Boston, MA
.
32.
Thompson
,
P. A.
,
1971
, “
A Fundamental Derivative in Gas Dynamics
,”
Phys. Fluids
,
14
(
9
), pp.
1843
1849
.10.1063/1.1693693
33.
Dai
,
Y.
,
2010
, “
Principle Study and Experimental Investigation of Gas Waves Refrigeration by Aggregated Thermal Dissipation
,” Ph.D. dissertation, Dalian University of Technology, Dalian, China.
34.
Dai
,
Y.
,
Hu
,
D.
,
Zou
,
J.
, and
Zhao
,
J.
,
2009
, “
Gas Flow in Unilateral Opening Pulse Tubes Based on Real Gas Equation of State
,”
Chin. J. Chem. Eng.
, 17(6), pp.
914
918
.10.1016/s1004-9541(08)60296-7
You do not currently have access to this content.