Abstract

In recent years, supercritical CO2 (sCO2) Brayton cycles have drawn the attention of researchers due to their high cycle efficiencies, compact turbomachinery, and environmental friendliness. For small-scale cycles, radial inflow turbines (RIT) are the prevailing choice and one of the key components. A mean line design procedure for sCO2 RIT is developed and design space exploration conducted for a 100 kW-class turbine for a low-temperature waste-heat utilization sCO2 Brayton cycle. By varying the two design parameters, specific speed and velocity ratio, different turbine configurations are setup and compared numerically by means of computational fluid dynamics (CFD) simulations. Results are analyzed to conclude on optimum design parameters with regard to turbine efficiency and expansion ratio. Specific speeds between 0.2 and 0.5 are recommended for sCO2 RIT with small though flow (3 kg/s). The higher the velocity ratio, the bigger the turbine expansion ratio. Pairs of optimum design parameters that effectuate maximum efficiency are identified, with smaller velocity ratios prevailing for smaller specific speeds. The turbine simulation results for sCO2 are compared to well-established recommendations for the design of RIT from literature, such as the Balje diagram. It is concluded that for the design of sCO2 RITs, the same principles can be used as for those for air turbines. By achieving total-to-static stage and rotor efficiencies of 84% and 86%, respectively, the developed mean line design procedure has proven to be an effective and easily applicable tool for the preliminary design of small-scale sCO2 RIT.

References

1.
Wright
,
S.
,
Radel
,
R.
,
Vernon
,
M.
,
Rochau
,
G.
, and
Pickard
,
P.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2010-0171,TRN: US201015%%981.
2.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.10.1115/1.4007199
3.
Utamura
,
M.
,
2012
, “
Demonstration of Supercritical CO2 Closed Regenerative Brayton Cycle in a Bench Scale Experiment
,”
ASME
Paper No. GT2012-68697.10.1115/GT2012-68697
4.
Moore
,
J.
,
Brun
,
K.
,
Evans
,
N.
,
Bueno
,
P.
, and
Kalra
,
C.
,
2014
, “
Development of a 1 MWe Supercritical CO2 Brayton Cycle Test Loop
,”
Fourth International Symposium-Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept.
9
10
.
5.
Ahn
,
Y.
,
Lee
,
J.
,
Kim
,
S. G.
,
Lee
,
J. I.
,
Cha
,
J. E.
, and
Lee
,
S.-W.
,
2015
, “
Design Consideration of Supercritical CO2 Power Cycle Integral Experiment Loop
,”
Energy
,
86
, pp.
115
127
.10.1016/j.energy.2015.03.066
6.
Shin
,
H.
,
2017
, “
Partial Admission, Axial Impulse Type Turbine Design and Partial Admission Radial Turbine Test for SCO2 Cycle
,”
ASME
Paper No. GT2017-64349.10.1115/GT2017-64349
7.
Cho
,
S. K.
,
Lee
,
J.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2016
, “
S-CO2 Turbine Design for Decay Heat Removal System of Sodium Cooled Fast Reactor
,”
ASME
Paper No. GT2016-56532.10.1115/GT2016-56532
8.
Clementoni
,
E.
,
Cox
,
T. L.
, and
King
,
M. A.
,
2016
, “
Initial Transient Power Operation of a Supercritical Carbon Dioxide Brayton Cycle With Thermal-Hydraulic Control
,”
Fifth International Symposium on Supercritical CO2 Power Cycles
, San Antonio, TX, Mar.
29
31
.http://sco2symposium.com/papers2016/Testing/060pres.pdf
9.
Chordia
,
L.
,
Portnoff
,
M. A.
, and
Green
,
E.
,
2017
, “
High Temperature Heat Exchanger Design and Fabrication for Systems With Large Pressure Differentials
,” Thar Energy, LLC, Pittsburgh, PA, Report No. DE-FE0024012.
10.
Chordia
,
L.
, and
Portnoff
,
M. A.
,
2018
, “
Supercritical Carbon Dioxide Brayton Power Cycle Test Loop—Operations Review
,”
Sixth International Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Mar.
28
31
.http://sco2symposium.com/papers2018/testing/089_Paper.pdf
11.
Benra
,
F.
,
2016
, “
A Supercritical CO2 Low Temperature Brayton-Cycle for Residual Heat Removal
,”
Fifth International Symposium on CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, pp.
1
5
.http://sco2symposium.com/papers2016/SystemConcepts/035paper.pdf
12.
Dohmen
,
H. J.
,
Hacks
,
A.
,
Benra
,
F.-K.
,
Brillert
,
D.
, and
Schuster
,
S.
,
2018
, “
Turbomachine Design for Supercritical Carbon Dioxide Within the sCO2-HeRo.eu Project
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121017
.10.1115/1.4040861
13.
Rodgers
,
C.
, and
Geiser
,
R.
,
1987
, “
Performance of a High-Efficiency Radial/Axial Turbine
,”
ASME J. Turbomach.
,
109
(
2
), pp.
151
154
.10.1115/1.3262077
14.
Whitfield
,
A.
,
1989
, “
The Preliminary Design of Radial Inflow Turbines
,”
ASME
Paper No. 89-GT-83.10.1115/89-GT-83
15.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
.
16.
Rohlik
,
H.
,
1968
, “
Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TN-D-4384.
17.
Glassman
,
A.
,
1976
, “
Computer Program for Preliminary Design Analysis of Axial-Flow Turbines
,” National Aeronautics and Space Administration, Cleveland, OH, Report No. NASA TN D-6702.
18.
Balje
,
O. E.
,
1981
,
Turbomachines: A Guide to Design, Selection and Theory
,
Wiley
,
Toronto, ON, Canada
.
19.
Thirumalai
,
N. C.
,
Badri
,
S. R.
, and
Venkatakrishnaiah
,
T.
,
2016
, “
Mean Line Design of Radial Inflow Turbine for sCO2 Power Systems
,”
Fifth International Symposium on Supercritical CO2 Power Cycles
, San Antonio, TX, Mar.
28
31
.http://www.cstep.in/drupal/node/301
20.
Qi
,
J.
,
Reddell
,
T.
,
Qin
,
K.
,
Hooman
,
K.
, and
Jahn
,
I. H.
,
2017
, “
Supercritical CO2 Radial Turbine Design Performance as a Function of Turbine Size Parameters
,”
ASME J. Turbomach.
,
139
(
8
), p.
081008
.10.1115/1.4035920
21.
Wei
,
Z.
,
2016
, “
Meanline and CFD Analyses at Design and Off-Design Operation of a Supercritical CO2 Radial Inflow Turbine
,”
Fifth International Symposium on Supercritical CO2 Power Cycles
, San Antonio, TX, Mar.
28
31
.
22.
Zhang
,
J.
,
Gomes
,
P.
,
Zangeneh
,
M.
, and
Choo
,
B.
,
2017
, “
Design of a Centrifugal Compressor Stage and a Radial-Inflow Turbine Stage for a Supercritical CO2 Recompression Brayton Cycle by Using 3D Inverse Design Method
,”
ASME
Paper No. GT2017-64631.10.1115/GT2017-64631
23.
Lee
,
J.
,
Lee
,
J. I.
,
Yoon
,
H. J.
, and
Cha
,
J. E.
,
2014
, “
Supercritical Carbon Dioxide Turbomachinery Design for Water-Cooled SMR Application
,”
Nucl. Eng. Des.
,
270
, pp.
76
89
.10.1016/j.nucengdes.2013.12.039
24.
Holaind
,
N.
,
Bianchi
,
G.
,
De Miol
,
M.
,
Saravi
,
S. S.
,
Tassou
,
S. A.
,
Leroux
,
A.
, and
Jouhara
,
H.
,
2017
, “
Design of Radial Turbomachinery for Supercritical CO2 systems Using Theoretical and Numerical CFD Methodologies
,”
Energy Procedia
,
123
, pp.
313
320
.10.1016/j.egypro.2017.07.256
25.
Lv
,
G.
,
Yang
,
J.
,
Shao
,
W.
, and
Wang
,
X.
,
2018
, “
Aerodynamic Design Optimization of Radial-Inflow Turbine in Supercritical CO2 Cycles Using a One-Dimensional Model
,”
Energy Convers. Manage.
,
165
, pp.
827
839
.10.1016/j.enconman.2018.03.005
26.
Zhou
,
A.
,
Song
,
J.
,
Li
,
X.
,
Ren
,
X.
, and
Gu
,
C.
,
2018
, “
Aerodynamic Design and Numerical Analysis of a Radial Inflow Turbine for the Supercritical Carbon Dioxide Brayton Cycle
,”
Appl. Therm. Eng.
,
132
, pp.
245
255
.10.1016/j.applthermaleng.2017.12.106
27.
Unglaube
,
T.
, and
Chiang
,
H.-W. D.
,
2018
, “
Small Scale Supercritical CO2 Radial Inflow Turbine Meanline Design Considerations
,”
ASME
Paper No. GT2018-75356.10.1115/GT2018-75356
28.
National Institute of Standards and Technology
,
2018
, “
NIST Standard Reference Data. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)
,” U.S. Department of Commerce, Gaithersburg, MD, accessed Jul. 8, 2018, https://www.nist.gov/srd/refprop
29.
Baines
,
N. C.
,
2003
, “
Radial Turbine Design
,”
Axial Radial Turbines
2, pp.
199
327
.
30.
Dixon
,
S. L.
, and
Hall
,
C.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Wei
,
Z.
,
2014
,
Meanline Analysis of Raidal Inflow Turbines at Design and Off-Design Conditions
,
Carleton University Ottawa
,
Ottawa, ON, Canada
.
32.
Korpela
,
S. A.
,
2012
,
Principles of Turbomachinery
,
Wiley
,
Hoboken, NJ
.
33.
Logan
,
E. J.
,
1981
,
Turbomachinery: Basic Theory and Applications
,
Marcel-Dekker
,
New York
.
34.
Ventura
,
C. A.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031102
.10.1115/1.4006174
35.
Simpson
,
A. T.
,
Spence
,
S. W. T.
, and
Watterson
,
J. K.
,
2013
, “
Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space and Vane Solidity in Radial Turbine Stators
,”
ASME J. Turbomach.
,
135
(
3
), p.
031001
.10.1115/1.4007525
You do not currently have access to this content.