Abstract

Labyrinth seals on both rotor casing and blade tip as an effective method to control the leakage flowrate of the shroud and improve aerodynamic performances in a transonic turbine stage are investigated in this study. Compared to the case without the labyrinth seal structure, the cases with three different types of sealing teeth have been shown to reduce significantly the tip leakage flow by computational simulations. The double-side sealing teeth case reduces the leakage flowrate mleakage/mpassage from 3.4% to 1.3% and increases the efficiency by 1.4%, which is the maximum efficiency improvement of all cases. The sealing structures increase the loss inside the shroud while reducing the momentum mixing between shroud leakage flow and mainstream. Therefore, the circumferential distribution of leakage velocity is changed, as well as the distribution of high-loss zones at turbine outlet. Furthermore, the leakage-vortex loss, which is associated with the blockage effect of sealing structure to the tip leakage flow, gains more improvement than the passage-vortex at the rotor outlet section in double-side seal case. In addition, it has also been found that with a larger gap at tip, the double-side seal has better effects of reducing the leakage flow and improving the aerodynamic performance in the transonic turbine stage.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
2.
Stetter
,
H.
,
Pfost
,
H.
,
Peters
,
P.
,
Lerner
,
C.
,
Mayer
,
J. F.
,
Giboni
,
A.
,
Breisig
,
V.
, and
Anker
,
J. E.
,
2001
, “
Deckbandströmungseinfluss I,” Abschlussbericht des FVV-Vorhabens Nr. 706, Teil 2: Numerische Arbeiten, FVV, Forschungsvereinigung Verbrennungskraftmaschinen e. V.,
Frankfurt a. M.
3.
Anker
,
J. E.
, and
Mayer
,
J. F.
,
2002
, “
Simulation of the Interaction of Labyrinth Seal Leakage Flow and Main Flow in an Axial Turbine
,”
ASME
Paper No. GT-2002-30348.10.1115/GT2002-30348
4.
Cherry
,
D.
,
Wadia
,
A.
,
Beacok
,
R.
,
Subramanian
,
M.
, and
Vitt
,
P.
,
2005
, “
Analytical Investigation of a Low Pressure Turbine With and Without Flowpath Endwall Gaps, Seals and Clearance Features
,”
ASME
Paper No. GT2005-68492.10.1115/GT2005-68492
5.
Gao
,
J.
,
Zheng
,
Q.
, and
Wang
,
Z.
,
2013
, “
Effect of Honeycomb Seals on Loss Characteristics in Shroud Cavities of an Axial Turbine
,”
Chin. J. Mech. Eng.
,
26
(
1
), pp.
69
77
.10.3901/CJME.2013.01.069
6.
Bohn
,
D. E.
,
Balkowski
,
I.
,
Ma
,
H.
, and
Tuemmers
,
C.
,
2003
, “
Influence of Open and Closed Shroud Cavities on the Flowfield in a 2-Stage Turbine With Shrouded Blades
,”
ASME
Paper No. GT2003-38436.10.1115/GT2003-38436
7.
Pei
,
W.
,
Qiang
,
D.
,
Jie
,
Y. X.
, and
Qiang
,
Z. J.
,
2013
, “
Heat Transfer and Aerodynamics of Complex Shroud Leakage Flows in a Low-Pressure Turbine
,”
J. Therm. Sci.
,
22
(
5
), pp.
447
458
.10.1007/s11630-013-0647-5
8.
Palmer
,
T. R.
,
Tan
,
C. S.
,
Zuniga
,
H.
,
Little
,
D.
,
Montgomery
,
M.
, and
Malandra
,
A.
,
2016
, “
Quantifying Loss Mechanisms in Turbine Tip Shroud Cavity Flows
,”
ASME J. Turbomach.
,
138
(
9
), p.
091006
.10.1115/1.4032922
9.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
,
2005
, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
127
(
4
), pp.
649
658
.10.1115/1.2006667
10.
Mahle
,
I.
,
2010
, “
Improving the Interaction Between Leakage Flows and Main Flow in a Low Pressure Turbine
,”
ASME
Paper No. GT-2010-22448.10.1115/GT2010-22448
11.
Wallis
,
A. M.
,
Denton
,
J. D.
, and
Demargne
,
A. A. J.
,
2000
, “
The Control of Shroud Leakage Flows to Reduce Aerodynamic Losses in a Low Aspect Ratio, Shrouded Axial Flow Turbine
,”
ASME
Paper No. GT-2000-0475.10.1115/2000-GT-0475
12.
Kumar
, BVNR
, and
Prasad
,
B.
,
2005
, “
A Combined CFD and Network Approach for the Simulation of Flow Systems
,”
J. Inst. Eng. (India), Mech. Eng. Div.
,
86
, pp.
129
133
.
13.
Wellborn
,
S. R.
,
Tolchinsky
,
I.
, and
Okiishi
,
T. H.
,
2000
, “
Caseling Shrouded Stator Cavity Flows in Axial-Flow Compressors
,”
ASME J. Turbomach.
,
122
(
1
), pp.
55
61
.10.1115/1.555427
14.
Kumar
,
V.
,
Kapoor
,
S.
,
Arora
,
G.
, and
Dutta
,
P.
,
2009
, “
A Combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis
,”
SAE
Technical Paper No. 2009-01-1150.10.4271/2009-01-1150
15.
Ludhi
,
A.
,
2006
,
1D and 3D Co-Simulation Between Flowmaster and CFD Packages
,
Flowmaster Ltd
,
Sankt Augustin, Germany
.
16.
El-Dosoky
,
M. F.
,
Rona
,
A.
, and
Gostelow
,
J. P.
,
2007
, “
An Analytical Model for Over-Shroud Leakage Losses in a Shrouded Turbine Stage
,”
ASME
Paper No. GT-2007-27786.10.1115/GT2007-27786
17.
Zou
,
Z.
,
Liu
,
J.
,
Zhang
,
W.
, and
Wang
,
P.
,
2016
, “
Shroud Leakage Flow Models and a Multi-Dimensional Coupling CFD (Computational Fluid Dynamics) Method for Shrouded Turbines
,”
Energy
,
103
, pp.
410
429
.10.1016/j.energy.2016.02.070
18.
Wolter
,
K.
,
Peters
,
P.
,
Giboni
,
A.
,
Menter
,
J. R.
, and
Pfost
,
H.
,
2005
, “
Experimental and Numerical Investigation of the Unsteady Leakage Flow Through the Rotor Tip Labyrinth of a 1.5-Stage Axial Turbine
,”
ASME
Paper No. GT2005-68156.10.1115/GT2005-68156
19.
Biester
,
M. H. O.
,
Wiegmann
,
F.
,
Guendogdu
,
Y.
, and
Seume
,
J. R.
,
2013
, “
Time-Resolved Numerical Study of Axial Gap Effects on Labyrinth-Seal Leakage and Secondary Flow in a LP Turbine
,”
ASME
Paper No. GT-2013-95628.10.1115/GT2013-95628
20.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2005
, “
Unsteady Flow Interactions Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,”
ASME J. Turbomach.
,
127
(
4
), pp.
679
688
.10.1115/1.2008973
21.
Gao
,
J.
,
Zheng
,
Q.
, and
Jia
,
X.
,
2014
, “
Performance Improvement of Shrouded Turbines With the Management of Casing Endwall Interaction Flows
,”
Energy
,
75
, pp.
430
442
.10.1016/j.energy.2014.07.092
22.
Peters
,
P.
,
Breisig
,
V.
,
Giboni
,
A.
,
Lerner
,
C.
, and
Pfost
,
H.
,
2000
, “
The Influence of the Clearance of Shrouded Rotor Blades on the Development of the Flowfield and Losses in the Subsequent Stator
,”
ASME
Paper No. 2000-GT-0478.10.1115/2000-GT-0478
23.
Barmpalias
,
K. G.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Hirano
,
T.
, and
Shibukawa
,
N.
,
2010
, “
Effects of Design Variations of Rotor Entry Cavity Geometry on Shrouded Steam Turbine Performance
,”
ASME
Paper No. GT-2010-22279.10.1115/GT2010-22279
24.
Barmpalias
,
K. G.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Hirano
,
T.
, and
Shibukawa
,
N.
, and
Sasaki
,
T.
,
2012
, “
Design Considerations for Axial Steam Turbine Rotor Inlet Cavity Volume and Length Scale
,”
ASME J. Turbomach.
,
134
(
5
), p.
051031
.10.1115/1.4004827
25.
Wallis
,
A. M.
,
Denton
,
J. D.
, and
Demargne
,
A. A. J.
,
2001
, “
The Control of Shroud Leakage Flows to Reduce Aerodynamic Losses in a Low Aspect Ratio, Shrouded Axial Flow Turbine
,”
ASME J. Turbomach.
,
123
(
2
), pp.
334
341
.10.1115/1.1354143
26.
Rosic
,
B.
, and
Denton
,
J. D.
,
2008
, “
Control of Shroud Leakage Loss by Reducing Circumferential Mixing
,”
ASME J. Turbomach.
,
130
(
2
), p.
021010
.10.1115/1.2750682
27.
Rosic
,
B.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part I: Shroud Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041001
.10.1115/1.2777201
28.
Rosic
,
B.
,
Denton
,
J. D.
,
Curtis
,
E. M.
, and
Peterson
,
A. T.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part II: Exit Cavity Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041002
.10.1115/1.2777202
29.
Harvey
,
N. W.
, and
Ramsden
,
K.
,
2001
, “
A Computational Study of a Novel Turbine Rotor Partial Shroud
,”
ASME J. Turbomach.
,
123
(
3
), pp.
534
543
.10.1115/1.1370166
30.
Mahle
,
I.
, and
Schmierer
,
R.
,
2011
, “
Inverse Fin Arrangement in a Low Pressure Turbine to Improve the Interaction Between Shroud Leakage Flows and Main Flow
,”
ASME
Paper No. GT-2011-45250.10.1115/GT2011-45250
31.
Curtis
,
E. M.
,
Denton
,
J. D.
,
Longley
,
J. P.
, and
Rosic
,
B.
,
2009
, “
Controlling Tip Leakage Flow Over a Shrouded Turbine Rotor Using an Air-Curtain
,”
ASME
Paper No. GT-2009-59411.10.1115/GT2009-59411
32.
Kim
,
T. S.
,
Kang
,
Y.
, and
Moon
,
H. K.
,
2009
, “
Aerodynamic Performance of Double-Sided Labyrinth Seals
,”
Fluid Machinery and Fluid Mechanics
,
Springer
,
Berlin, Heidelberg
, pp.
377
382
.
33.
Kang
,
Y.
,
Kim
,
T. S.
,
Kang
,
S. Y.
, and
Moon
,
H. K.
,
2010
, “
Aerodynamic Performance of Stepped Labyrinth Seals for Gas Turbine Applications
,”
ASME
Paper No. GT2010-23256.10.1115/GT2010-23256
34.
Erhard
,
J.
,
2000
, “
Design, Construction and Commissioning of a Transonic Test-Turbine Facility
,” Ph.D. dissertation, Graz University of Technology, Austria.
You do not currently have access to this content.