Abstract

The performance analysis of mixed-exhaust turbofan engine with multi-annular rotating detonation duct burner (RDDB) is conducted for the first time, considering that the flow path of the bypass duct is ideal for a rotating detonation combustor (RDC). The configuration of the multi-annular rotating detonation combustor is constructed aiming at the advantages of a wider operation range and uniform outlet parameters over the single-annular one. Then, a parametric analysis model of the mixed-exhaust turbofan engine with a rotating detonation duct burner is developed. Thereafter, the effects of duct burner parameters on the engine performance and operating characteristics are investigated. The mixed-exhaust turbofan engine with a rotating detonation duct burner shows superior overall performance to that of one with an isobaric afterburner (ICAB) over a wide operation range. The separate-exhaust rotating detonation duct burner can hold characteristics that are higher than those of the mixed-exhaust one at lower values of fan pressure ratio, while the mixed-exhaust one corresponds to lower values of turbine inlet temperature. When the rotating detonation duct burner is “on,” the low-pressure rotor operating line moves toward the surge line on the low corrected shaft speed side but away from the surge line on the high corrected shaft speed side.

References

1.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2006
, “
Continuous Spin Detonations
,”
J. Propul. Power
,
22
(
6
), pp.
1204
1216
.10.2514/1.17656
2.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
3.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
4.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2010
, “
Numerical Investigation of Rotating Detonation Engines
,”
AIAA
Paper No. 2010-6880.10.2514/6.2010-6880
5.
Yi
,
T.-H.
,
Lou
,
J.
,
Turangan
,
C.
,
Choi
,
J.-Y.
, and
Wolanski
,
P.
,
2011
, “
Propulsive Performance of a Continuously Rotating Detonation Engine
,”
J. Propul. Power
,
27
(
1
), pp.
171
181
.10.2514/1.46686
6.
Sato
,
T.
, and
Raman
,
V.
,
2018
, “
Analysis of Detonation Structures With Hydrocarbon Fuels for Application Towards Rotating Detonation Engines
,”
AIAA
Paper No. 2018-4965.10.2514/6.2018-4965
7.
Tsuboi
,
N.
,
Eto
,
S.
,
Hayashi
,
A. K.
, and
Kojima
,
T.
,
2017
, “
Front Cellular Structure and Thrust Performance on Hydrogen-Oxygen Rotating Detonation Engine
,”
J. Propul. Power
,
33
(
1
), pp.
100
111
.10.2514/1.B36095
8.
Yao
,
S.
, and
Wang
,
J.
,
2016
, “
Multiple Ignitions and the Stability of Rotating Detonation Waves
,”
Appl. Therm. Eng.
,
108
, pp.
927
936
.10.1016/j.applthermaleng.2016.07.166
9.
Xie
,
Q.
,
Wen
,
H.
,
Li
,
W.
,
Ji
,
Z.
,
Wang
,
B.
, and
Wolanski
,
P.
,
2018
, “
Analysis of Operating Diagram for H2/Air Rotating Detonation Combustors Under Lean Fuel Condition
,”
Energy
,
151
, pp.
408
419
.10.1016/j.energy.2018.03.062
10.
Liu
,
S.
,
Liu
,
W.
,
Lin
,
Z.
, and
Lin
,
W.
,
2015
, “
Experimental Research on the Propagation Characteristics of Continuous Rotating Detonation Wave Near the Operating Boundary
,”
Combust. Sci. Technol.
,
187
(
11
), pp.
1790
1804
.10.1080/00102202.2015.1019620
11.
Suchocki
,
J.
,
Yu
,
S.
,
Hoke
,
J.
,
Naples
,
A.
,
Schauer
,
F.
, and
Russo
,
R.
,
2012
, “
Rotating Detonation Engine Operation
,”
AIAA
Paper No. 2012-0119.10.2514/6.2012-0119
12.
Kindracki
,
J.
,
Wolański
,
P.
, and
Gut
,
Z.
,
2011
, “
Experimental Research on the Rotating Detonation in Gaseous Fuels–Oxygen Mixtures
,”
Shock Waves
,
21
(
2
), pp.
75
84
.10.1007/s00193-011-0298-y
13.
He
,
W.
,
Xie
,
Q.
,
Ji
,
Z.
,
Rao
,
Z.
, and
Wang
,
B.
,
2019
, “
Characterizing Continuously Rotating Detonation Via Nonlinear Time Series Analysis
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3433
3442
.10.1016/j.proci.2018.07.045
14.
Lin
,
W.
,
Zhou
,
J.
,
Liu
,
S.
,
Lin
,
Z.
, and
Zhuang
,
F.
,
2015
, “
Experimental Study on Propagation Mode of H2/Air Continuously Rotating Detonation Wave
,”
Int. J. Hydrogen Energy
,
40
(
4
), pp.
1980
1993
.10.1016/j.ijhydene.2014.11.119
15.
Deng
,
L.
,
Ma
,
H.
,
Xu
,
C.
,
Liu
,
X.
, and
Zhou
,
C.
,
2018
, “
The Feasibility of Mode Control in Rotating Detonation Engine
,”
Appl. Therm. Eng.
,
129
, pp.
1538
1550
.10.1016/j.applthermaleng.2017.10.146
16.
Kaemming
,
T. A.
,
Fotia
,
M. L.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2017
, “
Thermodynamic Modeling of a Rotating Detonation Engine Through a Reduced-Order Approach
,”
J. Propul. Power
,
33
(
5
), pp.
1170
1178
.10.2514/1.B36237
17.
Braun
,
E. M.
,
Lu
,
F. K.
,
Wilson
,
D. R.
, and
Camberos
,
J. A.
,
2013
, “
Airbreathing Rotating Detonation Wave Engine Cycle Analysis
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
201
208
.10.1016/j.ast.2012.08.010
18.
Fievisohn
,
R. T.
, and
Yu
,
K. H.
,
2017
, “
Steady-State Analysis of Rotating Detonation Engine Flowfields With the Method of Characteristics
,”
J. Propul. Power
,
33
(
1
), pp.
89
99
.10.2514/1.B36103
19.
Sousa
,
J.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Development of a Fast Evaluation Tool for Rotating Detonation Combustors
,”
Appl. Math. Model
,
52
, pp.
42
52
.10.1016/j.apm.2017.07.019
20.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.10.1016/j.apenergy.2017.03.045
21.
Ji
,
Z.
,
Zhang
,
H.
,
Xie
,
Q.
, and
Wang
,
B.
,
2018
, “
Thermodynamic Process and Performance Analysis of the Continuous Rotating Detonation Turbine Engine
,”
J. Tsinghua Univ. (Sci. Technol.)
,
58
(
10
), pp.
899
905
.10.16511/j.cnki.qhdxxb.2018.26.040
22.
Saracoglu
,
B. H.
, and
Ozden
,
A.
,
2018
, “
The Effects of Multiple Detonation Waves in the RDE Flow Field
,”
Transp. Res. Procedia
,
29
, pp.
390
400
.10.1016/j.trpro.2018.02.035
23.
Wolański
,
P.
,
2015
, “
Application of the Continuous Rotating Detonation to Gas Turbine
,”
Appl. Mech. Mater.
,
782
, pp.
3
12
.10.4028/www.scientific.net/AMM.782.3
24.
Welsh
,
D. J.
,
King
,
P. I.
,
DeBarmore
,
N. D.
,
Schauer
,
F. R.
, and
Hoke
,
J. L.
,
2014
, “
RDE Integration With T63 Turboshaft Engine Components
,”
AIAA
Paper No. 2014-1316.10.2514/6.2014-1316
25.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
,
Wagner
,
M.
, and
Schauer
,
F.
,
2017
, “
Rotating Detonation Engine Implementation Into an Open-Loop T63 Gas Turbine Engine
,”
AIAA
Paper No. 2017-1747.10.2514/6.2017-1747
26.
George
,
A. S.
,
Driscoll
,
R.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2014
, “
Experimental Comparison of Axial Turbine Performance Under Steady and Pulsating Flows
,”
ASME J. Turbomach.
,
136
(
11
), p.
111005
.10.1115/1.4028115
27.
Zhou
,
S.
,
Ma
,
H.
,
Ma
,
Y.
,
Zhou
,
C.
,
Liu
,
D.
, and
Li
,
S.
,
2018
, “
Experimental Study on a Rotating Detonation Combustor With an Axial-Flow Turbine
,”
Acta Astronaut.
,
151
, pp.
7
14
.10.1016/j.actaastro.2018.05.047
28.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031501
.10.1115/1.4040815
29.
Kaneshige
,
M.
, and
Shepherd
,
J. E.
,
1997
,
Detonation Database
,
Graduate Aeronautical Laboratories, California Institute of Technology
, Pasadena, CA, Report No. TR FM97-8.
30.
Sichel
,
M.
, and
Foster
,
J. C.
,
1979
, “
The Ground Impulse Generated by a Plane Fuel-Air Explosion With Side Relief
,”
Acta Astronaut.
,
6
(
3–4
), pp.
243
256
.10.1016/0094-5765(79)90096-1
31.
Ji
,
Z.
,
Zhang
,
H.
, and
Wang
,
B.
,
2019
, “
Performance Analysis of Dual-Duct Rotating Detonation Aero-Turbine Engine
,”
Aerosp. Sci. Technol.
,
92
, pp.
806
819
.10.1016/j.ast.2019.07.011
32.
Browne
,
S.
,
Ziegler
,
J.
, and
Shepherd
,
J. E.
,
2008
,
Numerical Solution Methods for Shock and Detonation Jump Conditions
,
California Institute of Technology
, Pasadena, CA, GALCIT Report No. FM2006-006.
33.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
,
Wiley
,
New York
.
You do not currently have access to this content.