Abstract

The Los Alamos turbulent reactive flow researchers, our modelers, and simulation code developers have succeeded in providing the engine research and development community an encompassing, robust, accurate, and easy-to-use software for engine modeling or simulations. This software is now known as the fearce Toolkit. In this paper, we discuss the physics present in the engine by discussing the methods we have employed to solve the model equations within the toolkit. Provided is background on what has been developed recently at LANL for internal combustion engine modeling.

References

1.
Desjardin
,
P. E.
, and
Frankel
,
S. H.
,
1999
, “
Two-Dimensional Large Eddy Simulation of Soot Formation in the Near Field of a Strongly Radiating Non-Premixed Acetylene-Air Jet Flame
,”
Combust. Flame
,
119
(
1–2
), pp.
121
133
.10.1016/S0010-2180(99)00048-6
2.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
3.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
4.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.-U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large-Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
5.
Waters
,
J.
,
Carrington
,
D. B.
, and
Pepper
,
D. W.
,
2015
, “
An Adaptive Finite Element Technique With Dynamic LES for Incompressible and Compressible Flows
,”
15th Computational Heat Transfer Conference
(
CHT-15
),
Piscataway, NJ
,
May 25–29
, pp.
229
233
.10.1615/ICHMT.2015.IntSympAdvComputHeatTransf.190
6.
Waters
,
J.
, and
Carrington
,
D. B.
,
2016
, “
A Parallel Large Eddy Simulation in a Finite Element Projection Method for All Flow Regimes
,”
Numer. Heat Transfer, Part A
,
70
(
2
), pp.
117
131
.10.1080/10407782.2016.1173453
7.
Waters
,
J.
,
Carrington
,
D. B.
, and
Pepper
,
D. W.
,
2016
, “
An Adaptive Finite Element Method With Dynamic LES for Turbulent Reactive Flows
,”
Comput. Therm. Sci.
,
8
(
1
), pp.
57
71
.10.1615/ComputThermalScien.2016013809
8.
Waters
,
J.
,
Carington
,
D. B.
, and
Pepper
,
D. W.
,
2015
, “
Application of a Dynamic LES Model With an H-Adaptive FEM for Fluid and Thermal Processes
,”
Proceedings of the First Thermal and Fluid Engineering Summer Conference
(
TFESC
),
New York
,
Aug. 9–12
, pp.
329
335
.10.1615/TFESC1.cmd.013842
9.
Carrington
,
D. B.
,
2011
, “
A Fractional Step hp-Adaptive Finite Element Method for Turbulent Reactive Flow
,” Los Alamos National Laboratory Report, Los Alamos, NM, Report No. LA-UR-11-00466.
10.
Carrington
,
D. B.
,
Wang
,
X.
, and
Pepper
,
D. W.
,
2014
, “
A Predictor-Corrector Split Projection Method for Turbulent Reactive Flow
,”
Comput. Therm. Sci.: Int. J.
,
v5
(
4
), pp.
333
352
.10.1615/ComputThermalScien.2013005819
11.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” NASA Ames Research Center, Moffett Field, CA, Report No. TM-103975.
12.
Carrington
,
D. B.
,
Munoz
,
D.
, and
Heinrich
,
J. C.
,
2014
, “
A Local ALE for Flow Calculations in Physical Domains Containing Moving Interfaces
,”
Prog. Comput. Fluid Dyn., Int. J.
,
14
(
3
), pp.
139
150
.10.1504/PCFD.2014.062429
13.
Carrington
,
D. B.
,
Mazumder
,
M.
, and
Heinrich
,
J. C.
,
2018
, “
Three-Dimensional Local ALE-FEM Method for Fluid Flow in Domains Containing Moving Boundaries/Objects Interfaces
,”
Prog. Comput. Fluid Dyn., Int. J.
,
18
(
4
), pp.
199
215
.10.1504/PCFD.2018.093573
14.
Dukowicz
,
J. K.
,
1980
, “
A Particle-Fluid Numerical Model for Liquid Sprays
,”
J. Comput. Phys.
,
35
(
2
), p.
229
.10.1016/0021-9991(80)90087-X
15.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II, A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11560-MS.
16.
Torres
,
D. J.
,
O'rourke
,
P. J.
, and
Amsden
,
A. A.
,
2003
, “
Efficient Multicomponent Fuel Algorithm
,”
Combust. Theory Modell.
,
7
(
1
), pp.
66
86
.10.1088/1364-7830/7/1/304
17.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization and Processes in High-Pressure Vaporizing Sprays
,”
Atomization Sprays Technol.
,
3
, pp.
309
337
.10.1615/AtomizSpr.v7.i6.70
18.
Stiesch
,
G.
,
2003
,
Modeling Engine Spray and Combustion Processes
,
Springer-Verlag
,
Berlin
, pp.
130
161
.
19.
Engine Combustion Network
, 2019, “
Spray A, 435 K Ambient Temperature, 2.93 MPa Pressure Vessel
,” Engine Combustion Network, accessed Nov. 7, 2019, https://ecn.sandia.gov/ecn-data-search/?nam=1
20.
Waters
,
J.
,
Carrington
,
D. B.
, and
Francois
,
M. M.
,
2017
, “
Modeling Multi-Phase Flow: Spray Break-Up Using Volume of Fluids in a Dynamic LES FEM Method
,”
Numer. Heat Transfer, Part B
,
72
(
4
), pp.
285
299
.10.1080/10407790.2017.1400307
21.
Grosshans
,
H.
,
Szasz
,
R. Z.
, and
Fuchs
,
L.
,
2011
, “
Full Spray Simulation—Coupled Volume of Fluid and Lagrangian Particle Tracking Methods
,”
24th European Conference on Liquid Atomization and Spray System
(
ILASS-Europe 2011
), Estoril, Portugal, Sept. 5.https://lup.lub.lu.se/search/publication/7a10d0d1-67fa-4475-aa87-bd2a810e2671
22.
Grosshans
,
H.
,
Szasz
,
R. Z.
, and
Fuchs
,
L.
,
2011
, “
Development of a Combined VOF-LPT Method to Simulate Two-Phase Flows in Various Regimes
,”
Seventh International Symposium on Turbulence and Shear Flow Phenomena
(
TSFP-7
), Ottawa, CA, July 28–31.http://www.tsfp-conference.org/proceedings/2011/4b2p.pdf
23.
Zienkiewicz
,
O. C.
,
Taylor
,
R.
, and
Nithiarasu
,
P.
,
2005
,
The Finite Element Method for Fluid Dynamics
, 6th ed.,
Butterworth-Heinemann, Oxford, UK.
24.
Peraire
,
J.
,
Vahdati
,
M.
,
Morgan
,
K.
, and
Zienkiewicz
,
O. C.
,
1987
, “
Adaptive Remeshing for Compressible Flows
,”
J. Comput. Phys.
,
72
(
2
), pp.
449
466
.10.1016/0021-9991(87)90093-3
25.
Carrington
,
D. B.
,
Wang
,
X.
, and
Pepper
,
D. W.
,
2014
, “
An hp-Adaptive Predictor-Corrector Split Projection Method for Turbulent Compressible Flow
,”
15th International Heat Transfer Conference
(
IHTC-15
),
Kyoto, Japan
,
Aug. 10–15
, pp.
1737
1750
.10.1615/IHTC15.cpm.009342
26.
Ilinca
,
F.
,
Pelletier
,
D.
, and
Garon
,
A.
,
1997
, “
An Adaptive Finite Element Method for a Two Equation Turbulence Model in Wall-Bounded Flows
,”
Int. J. Numer. Methods Fluids
,
24
(
1
), pp.
101
120
.10.1002/(SICI)1097-0363(19970115)24:1<101::AID-FLD482>3.0.CO;2-S
27.
Nithiarasu
,
P.
, and
Zienkiewicz
,
O. C.
,
2000
, “
Adaptive Mesh Generation for Fluid Mechanics Problems
,”
Int. J. Numer. Methods Eng.
,
47
(
1–3
), pp.
629
662
.10.1002/(SICI)1097-0207(20000110/30)47:1/3<629::AID-NME786>3.0.CO;2-Y
28.
Zienkiewicz
,
O. C.
, and
Zhu
,
R. J. Z.
,
1987
, “
A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
337
357
.10.1002/nme.1620240206
29.
Demkowicz
,
L.
,
2006
,
Computing With hp-Adaptive Finite Elements. One- and Two- Dimensional Elliptic and Maxwell Problems
,
Chapman & Hall/CRC Press/Taylor and Francis
, Boca Raton, FL.
30.
Wang
,
X.
, and
Pepper
,
D. W.
,
2007
, “
Application of an hp-Adaptive FEM for Solving Thermal Flow Problems
,”
AIAA J. Thermophys. Heat Transfer
,
21
(
1
), pp.
190
198
.10.2514/1.22414
31.
Pepper
,
D. W.
, and
Carrington
,
D. B.
,
1999
, “
Application of h-Adaptation for Environmental Fluid Flow and Species Transport
,”
Int. J. Numer. Methods Fluids
,
31
(
1
), pp.
275
283
.10.1002/(SICI)1097-0363(19990915)31:1<275::AID-FLD968>3.0.CO;2-A
32.
Kumar
,
M.
, and
Roy
,
S.
,
2016
, “
A Sharp Interface Immersed Boundary Method for Moving Geometries With Mass Conservation and Smooth Pressure Variation
,”
Comput. Fluids
,
137
, pp.
15
35
.10.1016/j.compfluid.2016.07.008
33.
Carrington
,
D.
,
2008
, “
A Parallel First-Order Spherical Harmonics (P1) Matrix-Free Method for Radiative Transport
,”
Numer. Heat Transfer, Part B
,
53
(
3
), pp.
97
117
.10.1080/10407790701703427
34.
ANSYS,
2011
, “
ANSYS Chemkin-Pro
,” Reaction Design, ANSYS Inc, Canonsburg, PA.
35.
Van Dam
,
N.
,
Zeng
,
W.
,
Sjöberg
,
M.
, and
Som
,
S.
,
2017
, “
Parallel Multi-Cycle LES of an Optical Pent-Roof DISI Engine Under Motored Operating Conditions
,”
ASME
Paper No. ICEF2017-3603.10.1115/ICEF2017-3603
36.
Torres
,
D.
,
Li
,
Y.
, and
Kong
,
S.
,
2010
, “
Partitioning Strategies for Parallel KIVA-4 Engine Simulations
,”
Comput. Fluids
,
39
(
2
), pp.
301
309
.10.1016/j.compfluid.2009.09.008
You do not currently have access to this content.