Abstract

To avoid flashback issues of the high-H2 syngas fuel, current syngas turbines usually use nonpremixed combustors, which have high NOx emissions. A promising solution to this dilemma is rich-burn, quick-mix, lean-burn (RQL) combustion, which not only reduces NOx emissions but also mitigates flashback. This paper presents a kinetics modeling study on NOx emissions of a syngas–fueled gas turbine combustor using RQL architecture. The combustor was simulated with a chemical reactor network (CRN) model in chemkin-pro software. The combustion and NOx formation reactions were modeled using a detailed kinetics mechanism that was developed for syngas. Impacts of combustor design/operating parameters on NOx emissions were systematically investigated, including combustor outlet temperature, rich/lean air flow split, and residence time split. The mixing effects in both the rich-burn zone and the quick-mix zone were also investigated. Results show that for an RQL combustor, the NOx emissions initially decrease and then increase with combustor outlet temperature. The leading parameters for NOx control are temperature-dependent. At typical modern gas turbine combustor operating temperatures (e.g., <1890 K), the air flow split is the most effective parameter for NOx control, followed by the mixing at the rich-burn zone. However, as the combustor outlet temperature increases, the impacts of air flow split and mixing in the rich-burn zone on NOx reduction become less pronounced, whereas both the residence time split and the mixing in the quick-mix zone become important.

References

1.
Hui
,
X.
,
Zhang
,
Z.
,
Mu
,
K.
,
Wang
,
Y.
, and
Xiao
,
Y.
,
2007
, “
Effect of Fuel Dilution on the Structure and Pollutant Emission of Syngas Diffusion Flames
,”
ASME
Paper No. GT2007-27481.10.1115/GT2007-27481
2.
Shi
,
B.
,
Li
,
B.
,
Zhao
,
X.
,
Chen
,
R.
,
Fujita
,
O.
, and
Wang
,
N.
,
2018
, “
Rapidly Mixed Combustion of Hydrogen/Oxygen Diluted by N2 and CO2 in a Tubular Flame Combustor
,”
Int. J. Hydrogen Energy
,
43
(
31
), pp.
14806
14815
.10.1016/j.ijhydene.2018.06.068
3.
Samuelsen
,
S.
,
2006
, “
Rich Burn, Quick-Mix, Lean Burn (RQL) Combustor
,”
The Gas Turbine Handbook
,
US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory
, Morgantown, WV, Report No. DOE/NETL2006-1230, pp.
227
233
.
4.
McKinney
,
R.
,
Cheung
,
A.
,
Sowa
,
W.
, and
Sepulveda
,
D.
,
2007
, “
The Pratt & Whitney TALON X Low Emissions Combustor: Revolutionary Results With Evolutionary Technology
,”
AIAA
Paper No. 2007-386.10.2514/6.2007-386
5.
Ingenito
,
A.
,
Agresta
,
A.
,
Andriani
,
R.
, and
Gamma
,
F.
,
2014
, “
RQL Combustion as an Effective Strategy to NOx Reduction in Gas Turbine Engines
,”
ASME
Paper No. IMECE2014-36898.10.1115/IMECE2014-36898
6.
Kyprianidis
,
K. G.
,
Nalianda
,
D.
, and
Dahlquist
,
E.
,
2015
, “
A NOx Emissions Correlation for Modern RQL Combustors
,”
Energy Procedia
,
75
, pp.
2323
2330
.10.1016/j.egypro.2015.07.433
7.
Kyprianidis
,
K. G.
, and
Dahlquist
,
E.
,
2017
, “
On the Trade-Off Between Aviation NOx and Energy Efficiency
,”
Appl. Energy
,
185
, pp.
1506
1516
.10.1016/j.apenergy.2015.12.055
8.
Feitelberg
,
A. S.
, and
Lacey
,
M. A.
,
1998
, “
The GE Rich-Quench-Lean Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
502
508
.10.1115/1.2818173
9.
Straub
,
D. L.
,
Casleton
,
K. H.
,
Lewis
,
R. E.
,
Sidwell
,
T. G.
,
Maloney
,
D. J.
, and
Richards
,
G. A.
,
2005
, “
Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
36
41
.10.1115/1.1789152
10.
Sullivan-Lewis
,
E.
,
Hack
,
R.
, and
McDonell
,
V.
,
2012
, “
Performance Assessment of a Gas Fired RQL Combustion System Operated in a Vitiated Air Stream
,”
AIAA
Paper No. 2012-4034.10.2514/6.2012-4034
11.
Göke
,
S.
,
Füri
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process Technol.
,
107
, pp.
14
22
.10.1016/j.fuproc.2012.06.019
12.
Fantozzi
,
F.
,
Laranci
,
P.
,
Bianchi
,
M.
,
De Pascale
,
A.
,
Pinelli
,
M.
, and
Cadorin
,
M.
,
2009
, “
CFD Simulation of a Microturbine Annular Combustion Chamber Fuelled With Methane and Biomass Pyrolysis Syngas: Preliminary Results
,”
ASME
Paper No. GT2009-60030.10.1115/GT2009-60030
13.
Fantozzi
,
F.
,
Laranci
,
P.
, and
Bidini
,
G.
,
2010
, “
CFD Simulation of Biomass Pyrolysis Syngas vs. Natural Gas in a Microturbine Annular Combustor
,”
ASME
Paper No. GT2010-23473.10.1115/GT2010-23473
14.
Laranci
,
P.
,
Bursi
,
E.
, and
Fantozzi
,
F.
,
2011
, “
Numerical Analysis of Biomass-Derived Gaseous Fuels Fired in a RQL Micro Gas Turbine Combustion Chamber: Preliminary Results
,”
ASME
Paper No. GT2011-45807.10.1115/GT2011-45807
15.
Laranci
,
P.
,
Bidini
,
G.
,
D'Alessandro
,
B.
,
Zampilli
,
M.
,
Forcella
,
F.
, and
Fantozzi
,
F.
,
2015
, “
Improving Lifetime and Manufacturability of an RQL Combustor for Microturbines: Design and Numerical Validation
,”
ASME
Paper No. GT2015-43543.10.1115/GT2015-43543
16.
Abagnale
,
C.
,
Cameretti
,
M. C.
,
De Robbio
,
R.
, and
Tuccillo
,
R.
,
2016
, “
CFD Study of a MGT Combustor Supplied With Syngas
,”
Energy Procedia
,
101
, pp.
933
940
.10.1016/j.egypro.2016.11.118
17.
Liu
,
H.
,
Qian
,
W.
,
Zhu
,
M.
, and
Li
,
S.
,
2018
, “
Kinetics Modeling on NOx Emissions of Gas Turbine Combustors for Syngas Applications
,”
Montreal Global Power and Propulsion
, Montreal, QC, Canada, May 7–9, GPPS Paper No.
GPPS-NA-2018-0055
.https://zenodo.org/record/1342419#.XfHjl5MzbZ4
18.
Li
,
H.
,
ElKady
,
A.
, and
Evulet
,
A.
,
2009
, “
Effect of Exhaust Gas Recirculation on NOx Formation in Premixed Combustion System
,”
AIAA
Paper No. 2009-226.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.705.2624&rep=rep1&type=pdf
19.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.10.1016/j.combustflame.2017.03.019
20.
Kosarev
,
I. N.
,
Starikovskaia
,
S. M.
, and
Starikovskii
,
A. Y.
,
2007
, “
The Kinetics of Autoignition of Rich N2O–H2–O2–Ar Mixtures at High Temperatures
,”
Combust. Flame
,
151
(
1–2
), pp.
61
73
.10.1016/j.combustflame.2007.06.009
21.
Mulvihill
,
C. R.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2018
, “
The Unimportance of the Reaction H2 + N2O ⇆ H2O + N2: A Shock-Tube Study Using H2O Time Histories and Ignition Delay Times
,”
Combust. Flame
,
196
, pp.
478
486
.10.1016/j.combustflame.2018.07.003
22.
Zeldovich
,
Y. B.
,
2014
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynamics
, Vol.
140
,
Princeton University Press
, Princeton, NJ.
23.
Nicol
,
D. G.
,
Steele
,
R. C.
,
Marinov
,
N. M.
, and
Malte
,
P. C.
,
1995
, “
The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
1
), pp.
100
111
.10.1115/1.2812756
24.
Bozzelli
,
J. W.
, and
Dean
,
A. M.
,
1995
, “
O+ NNH: A Possible New Route for NOx Formation in Flames
,”
Int. J. Chem. Kinet.
,
27
(
11
), pp.
1097
1109
.10.1002/kin.550271107
25.
Qian
,
W.
,
Zhu
,
M.
, and
Li
,
S.
,
2017
, “
A Kinetics Study on the NOx Emissions of Axially Staged Combustion System for Gas Turbine Applications
,”
Shanghai Global Power and Propulsion Forum
, Shanghai, China, Oct. 31–Nov. 1, Paper No.
GPPS-2017-0016
.https://www.gpps.global/documents/events/shanghai17/papers/combustor-combustion/GPPS-AME17-16.pdf
26.
Hoferichter
,
V.
,
Ahrens
,
D.
,
Kolb
,
M.
, and
Sattelmayer
,
T.
,
2014
, “
A Reactor Model for the NOx Formation in a Reacting Jet in Hot Cross Flow Under Atmospheric and High Pressure Conditions
,”
ASME
Paper No. GT2014-26711.10.1115/GT2014-26711
27.
Mkpadi
,
M. C.
,
Andrews
,
G. E.
,
Khan
,
I.
,
Jaafar
,
M. M.
,
Pourkashanian
,
M.
, and
Yang
,
Y.
,
2001
, “
Lean/Lean Staged Low NOx Combustion for Near Stoichiometric Gas Turbine Primary Zone Conditions
,”
ASME
Paper No. GT2001-0082.10.1115/2001-GT-0082
28.
Romoser
,
C. E.
,
Harper
,
J.
,
Wilson
,
M. B.
,
Simons
,
D. W.
,
Citeno
,
J. V.
, and
Lal
,
M.
,
2016
, “
E-Class Late Fuel Staging Technology Delivers Flexibility Leap
,”
ASME
Paper No. GT2016-57964.10.1115/GT2016-57964
You do not currently have access to this content.