Abstract

The experimental setup for a hole-pattern seal is modeled using computational fluid dynamics (CFD) and results compared with measured test data and bulk flow model (ISOTSEAL) predictions. The inlet swirl boundary condition for prior CFD analyses of this test case have either been assumed or based on pitot-tube measurements. In this paper, the validity of each is investigated by including radial inlet nozzles with the inlet plenum in the model geometry. A transient mesh deformation technique with multiple frequency journal excitations is used to determine frequency-dependent rotordynamic coefficients. This multifrequency excitation method is validated against single frequency sinusoidal journal excitation. An empirical limit on the number of frequencies that can be packed in a multifrequency excitation signal to provide a reasonable estimate of rotordynamic coefficients is provided. Rotordynamic coefficients estimated using CFD compare well with measured rotordynamic coefficients. For the given test data, the ISOTSEAL bulk flow model does not provide good correlation for cross-coupled stiffness if the measured swirl ratio at the inlet of the seal is used in the prediction. However, improvement in correlation for cross-coupled stiffness is obtained if the swirl ratio found from CFD analysis is used in the bulk flow model, indicating that pitot-tube measurements of swirl may not be accurate.

References

1.
Moore
,
J.
,
Camatti
,
M.
,
Smalley
,
A.
,
Vannini
,
G.
, and
Vermin
,
L.
,
2006
, “
Investigation of a Rotordynamic Instability in a High Pressure Centrifugal Compressor Due to Damper Seal Clearance Divergence
,”
Seventh IFToMM-Conference on Rotor Dynamics
, Vienna, Austria, Sept. 25–28, Paper No. 130.
2.
Kleynhans
,
G. F.
,
1996
, “
A Two-Control-Volume Bulk-Flow Rotordynamic Analysis for Smooth-Rotor/Honeycomb-Stator Gas Annular Seals
,” Ph.D. dissertation, Texas A&M University, College Station, TX.
3.
Kleynhans
,
G. F.
, and
Childs
,
D. W.
,
1997
, “
The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbine Power
,
119
(
4
), pp.
949
956
.10.1115/1.2817079
4.
Childs
,
D.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern Stator Annular Gas Seals-Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
5.
Nielsen
,
K. K.
,
Jonck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME
Paper No. GT2012-6987811-15.10.1115/GT2012-6987811-15
6.
Chochua
,
G.
, and
Soulas
,
T.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
428
.10.1115/1.2647531
7.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.10.1115/1.4003403
8.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
Rotordynamic Performance Prediction for Surface-Roughened Seal Using Transient Computational Fluid Dynamics and Elliptical Orbit Model
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
226
(
8
), pp.
975
988
.10.1177/0957650912460358
9.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annular Gas Seals Prediction
,”
ASME J. Vib. Acoust
.,
135
(3), p.
031005
.10.1115/1.4023143
10.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
A Generalized Prediction Method for Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092506
.10.1115/1.4029883
11.
Moore
,
J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
12.
Pugachev
,
A.
, and
Deckner
,
M.
,
2010
, “
Analysis of the Experimental and CFD-Based Theoretical Methods for Studying Rotordynamic Characteristics of Labyrinth Gas Seals
,”
ASME
Paper No. GT2010-22058.10.1115/GT2010-22058
13.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2012
, “
A Computational Fluid Dynamics/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Tribol.
,
134
(
2
), p.
022202
.10.1115/1.4006407
14.
Pugachev
,
A. O.
,
Kleinhans
,
U.
, and
Gaszner
,
M.
,
2012
, “
Prediction of Rotordynamic Coefficients for Short Labyrinth Gas Seals Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
062501
.10.1115/1.4005971
15.
Untaroiu
,
A.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2013
, “
Numerical Modeling of Fluid-Induced Rotordynamic Forces in Seals With Large Aspect Ratios
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012501
.10.1115/1.4007341
16.
Li
,
J.
,
Li
,
Z.
, and
Feng
,
Z.
,
2012
, “
Investigations on the Rotordynamic Coefficients of Pocket Damper Seals Using the Multifrequency, One-Dimensional, Whirling Orbit Model and RANS Solutions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102510
.10.1115/1.4007063
17.
Boyd
,
S.
,
1986
, “
Multitone Signals With Low Crest Factor
,”
IEEE Trans. Circuits Syst.
,
Cas-33
(
10
), pp.
1018
1022
.10.1109/TCS.1986.1085837
18.
Rouvas
,
C.
, and
Childs
,
D.
,
1993
, “
A Parameter Identification Method for the Rotordynamic Coefficients of a High Reynolds Number Hydrostatic Bearing
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
264
270
.10.1115/1.2930343
19.
Schroeder
,
M. R.
,
1970
, “
Synthesis of Low Peak Factor Signals and Binary Sequences With Low Autocorrelation
,”
IEEE Trans. Inform. Theory
,
16
(
1
), pp.
85
89
.10.1109/TIT.1970.1054411
20.
Guillaume
,
P.
,
Schoukens
,
J.
,
Pintelon
,
R.
, and
Kollar
,
I.
,
1991
, “
Crest-Factor Minimization Using Nonlinear Chebyshev Approximation Methods
,”
IEEE Trans. Instrum. Meas.
,
40
(
6
), pp.
982
989
.10.1109/19.119778
21.
ANSYS® CFX, Release 17.1, Help System, CFX-Solver Theory Guide, Chapter 11, ANSYS, Inc.
You do not currently have access to this content.