Abstract

Lean-burn gas engines have recently attracted attention in the maritime industry, because they can reduce NOx, SOx, and CO2 emissions. However, since methane (CH4) is the main component of natural gas, the slipped methane, which is the unburned methane, likely contributes to global warming. It is thus important to make progress on exhaust after-treatment technologies for lean-burn gas engines. A Palladium (Pd) catalyst for CH4 oxidation is expected to provide a countermeasure for the slipped methane, because it can activate at lower exhaust temperature comparing with platinum. However, a de-activation in higher water (H2O) concentration should be overcome because H2O inhibits CH4 oxidation. This study was performed to investigate the effects of exhaust temperature or gas composition on active Pd catalyst sites to clarify CH4 oxidation performance in the exhaust gas of lean-burn gas engines. The authors developed the method of estimating effective active sites for the Pd catalyst at various exhaust temperatures. The estimation method is based on the assumption that active sites used for CH4 oxidation process can be shared with the active sites used for carbon mono-oxide (CO) oxidation. The molecular of chemisorbed CO on the active sites of the Pd catalyst can provide effective active sites for CH4 oxidation process. This paper introduces experimental results and verifications of the new method, showing that chemisorbed CO volume on a Pd/Al2O3 catalyst is increased with increasing Pd loading in 250–450 °C, simulated as a typical exhaust temperature range of lean-burn gas engines.

References

1.
Lin
,
C. Y.
,
2013
, “
Strategies for Promoting Biodiesel Use in Marine Vessels
,”
Mar. Policy
,
40
, pp.
84
90
.10.1016/j.marpol.2013.01.003
2.
Brynolf
,
S.
,
Magnusson
,
M.
,
Fridell
,
E.
, and
Andersson
,
K.
,
2014
, “
Compliance Possibilities for the Future ECA Regulations Through the Use of Abatement Technologies or Change of Fuels
,”
Transp. Res. Part D Transp. Environ.
,
28
, pp.
6
18
.10.1016/j.trd.2013.12.001
3.
Herdzik
,
J.
,
2012
, “
Aspects of Using LNG as a Marine Fuel
,”
J. Kones
,
19
(
2
), pp.
201
209
.10.5604/12314005.1137919
4.
Per Magne
,
E.
,
2007
, “
Gas Fueled Ships
,”
CIMAC Congress
,
Shanghai, China
, May, Paper No. 261.
5.
Nylund
,
I.
, and
Ott
,
M.
,
2013
, “
Development of a Dual Fuel Technology for Slow-Speed Engines
,”
CIMAC Congress
,
Shanghai, China
, May, Paper No. 284.
6.
Troberg
,
M.
,
Portin
,
K.
, and
Jarvi
,
A.
,
2013
, “
Update on Wärtsilä 4-Stroke Gas Product Development
,”
CIMAC Congress
,
Shanghai, China
, May, Paper No. 406.
7.
Juliussen
,
L. R.
,
Mayer
,
S.
, and
Kryger
,
M.
,
2013
, “
The MAN ME-GI Engine: From Initial System Considerations to Implementation and Performance Optimization
,”
CIMAC Congress
,
Shanghai, China
, May, Paper No. 424.
8.
Myhre
,
G.
,
Shindell
,
D.
,
Bréon
,
F. M.
,
Collins
,
W.
,
Fuglestvedt
,
J.
,
Huang
,
J.
,
Koch
,
D.
,
Lamarque
,
J.-F.
,
Lee
,
D.
,
Mendoza
,
B.
,
Nakajima
,
T.
,
Robock
,
A.
,
Stephens
,
G.
,
Takemura
,
T.
, and
Zhang
,
H.
,
2013
, “
Anthropogenic and Natural Radiative Forcing
,”
Climate Change 2013
,
Cambridge University Press
,
Cambridge, UK
.
10.
Anderson
,
M.
,
Salo
,
K.
, and
Fridell
,
E.
,
2015
, “
Particle- and Gaseous Emissions from an LNG Powered Ship
,”
Environ. Sci. Technol.
,
49
(
20
), pp.
12568
12575
.10.1021/acs.est.5b02678
11.
Tashima
,
H.
, and
Tsuru
,
D.
,
2013
, “
Reduction of Methane Slip from Gas Engines by O2 Concentration Control Using Gas Permeation Membrane
,”
SAE Paper No. 2013-01-2618
. 10.4271/2013-01-2618
12.
May
,
I.
,
Cairns
,
A.
,
Zhao
,
H.
,
Pedrozo
,
V.
,
Wong
,
H. C.
,
Whelan
,
S.
, and
Bennicke
,
P.
,
2015
, “
Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine
,”
SAE Paper No. 2015-01-1798
. 10.4271/2015-01-1798
13.
Nitta
,
Y.
,
Yoo
,
D. H.
,
Nishio
,
S.
,
Ichikawa
,
Y.
, and
Hirata
,
K.
,
2015
, “
Improvement of Exhaust Gas Emissions by Exhaust Gas Recirculation System Combined Marine Diesel Engine and Gas Engine
,”
85th Annual Meeting of Japan Institute of Marine Engineering
,
Toyama, Japan
, Oct., pp.
17
18
(in Japanese).
14.
Nitta
,
Y.
,
Yoo
,
D. H.
,
Nishio
,
S.
,
Ichikawa
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
Y.
,
2016
, “
Evaluation of Emissions Characteristics by Charging Exhaust Gas From Lean Burn Gas Engine Into Marine Diesel Engine
,”
ASME Paper No. ICEF2016-9350
. 10.1115/ICEF2016-9350
15.
Nitta
,
Y.
,
Niki
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
Y.
,
2016
, “
Characteristics of Exhaust Gas of Marine Diesel Engine With Gas Engine Exhaust Gas Including Unburned Methane (Effects of Intake Gas Components and Intake Timing on Combustion of Lean Methane in Diesel Engine)
,”
27th Internal Combustion Engine Symposium
,
Tokyo, Japan
, Dec., p.
65
(in Japanese).
16.
Nitta
,
Y.
,
Niki
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
Y.
,
2017
, “
Effects of the Combustion Characteristics of Diesel Engine by the Intake of Exhaust Gas From Gas Engine
,”
Proceedings of the International Symposium on Marine Engineering (ISME)
,
Tokyo, Japan
, Oct., pp.
B13
313
.https://www.jstage.jst.go.jp/article/jime/53/3/53_392/_pdf/-char/ja
17.
Nitta
,
Y.
,
Yoo
,
D. H.
,
Nishio
,
S.
,
Ichikawa
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
Y.
,
2018
, “
Evaluation of Emissions Characteristics of Marine Diesel Engine Intake of Exhaust Gas of Lean Burn Gas Engine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022802
.10.1115/1.4037868
18.
Nitta
,
Y.
,
Niki
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
Y.
,
2018
, “
Effects of the Combustion Characteristics of Diesel Engine by the Intake of Exhaust Gas From Gas Engine
,”
J. Jpn. Inst. Mar. Eng.
,
53
(
3
), pp.
392
125
.10.5988/jime.53.392
19.
Ciuparu
,
D.
,
Lyubovsky
,
M. R.
,
Altman
,
E.
,
Pfefferle
,
L. D.
, and
Datye
,
A.
,
2002
, “
Catalytic Combustion of Methane Over Palladium-Based Catalysts
,”
Catal. Rev. Sci. Eng.
,
44
(
4
), pp.
593
776
.10.1081/CR-120015482
20.
Ciuparu
,
D.
,
Katsikis
,
N.
, and
Pfefferle
,
L.
,
2001
, “
Temperature and Time Dependence of the Water Inhibition Effect on Supported Palladium Catalyst for Methane Combustion
,”
Appl. Catal. A: General
,
216
(
1–2
), pp.
209
215
.10.1016/S0926-860X(01)00558-0
21.
Gelin
,
P.
,
Urfels
,
L.
,
Primet
,
M.
, and
Tena
,
E.
,
2003
, “
Complete Oxidation of Methane at Low Temperature Over Pt and Pd Catalysts for the Abatement of Lean-Burn Natural Gas Fuelled Vehicles Emissions: Influence of Water and Sulphur Containing Compounds
,”
Catal. Today
,
83
(
1–4
), pp.
45
57
.10.1016/S0920-5861(03)00215-3
22.
Burch
,
R.
, and
Loader
,
P. K.
,
1994
, “
Investigation of Pt/Al2O3 and Pd/Al2O3 Catalysts for the Combustion of Methane at Low Concentrations
,”
Appl. Catal. B: Environ.
,
5
(
1–2
), pp.
149
164
.10.1016/0926-3373(94)00037-9
23.
Lampert
,
J. K.
,
Kazi
,
M. S.
, and
Farrauto
,
R. J.
,
1997
, “
Palladium Catalyst Performance for Methane Emissions Abatement From Lean Burn Natural Gas Vehicles
,”
Appl. Catal. B: Environ.
,
14
(
3–4
), pp.
211
223
.10.1016/S0926-3373(97)00024-6
24.
Neyestanaki
,
A. K.
,
Klingstedt
,
F.
,
Salmi
,
T.
, and
Murzin
,
D. Y.
,
2004
, “
Deactivation of Postcombustion Catalysts, A Review
,”
Fuel
,
83
(
4–5
), pp.
395
408
.10.1016/j.fuel.2003.09.002
25.
Gholami
,
R.
,
Alyani
,
M.
, and
Smith
,
K. J.
,
2015
, “
Deactivation of Pd Catalysts by Water During Low Saturated Temperature Methane Oxidation Relevant to Natural Gas Vehicle Converters
,”
Catalysts
,
5
(
2
), pp.
561
594
.10.3390/catal5020561
26.
Schwartz
,
W. R.
,
Ciuparu
,
D.
, and
Pfefferle
,
L.
,
2012
, “
Combustion of Methane Over Palladium-Based Catalysts: Catalytic Deactivation and Role of the Support
,”
J. Phys. Chem. C
,
116
(
15
), pp.
8587
8593
.10.1021/jp212236e
27.
Fujimoto
,
K.
,
Ribeiro
,
F. H.
,
Avalos-Borja
,
M.
, and
Iglesia
,
E.
,
1998
, “
Structure and Reactivity of PdOx/ZrO2 Catalysts for Methane Oxidation at Low Temperatures
,”
J. Catal.
,
179
(
2
), pp.
431
442
.10.1006/jcat.1998.2178
28.
Kikuchi
,
R.
,
Maeda
,
S.
,
Sasaki
,
K.
,
Wennerström
,
S.
, and
Eguchi
,
K.
,
2002
, “
Low-Temperature Methane Oxidation Over Oxide-Supported Pd Catalysts: Inhibitory Effect of Water Vapor
,”
Appl. Catal. A: General
,
232
(
1–2
), pp.
23
28
.10.1016/S0926-860X(02)00096-0
29.
Persson
,
K.
,
Pfefferle
,
L. D.
,
Schwartz
,
W.
,
Ersson
,
A.
, and
Järås
,
S. G.
,
2007
, “
Stability of Palladium-Based Catalysts During Catalytic Combustion of Methane: The Influence of Water
,”
Appl. Catal. B: Environ.
,
74
(
3–4
), pp.
242
250
.10.1016/j.apcatb.2007.02.015
30.
Ciuparu
,
D.
, and
Pfefferle
,
L.
,
2002
, “
Contributions of Lattice Oxygen to the Overall Oxygen Balance During Methane Combustion Over PdO-Based Catalysts
,”
Catal. Today
,
77
(
3
), pp.
167
179
.10.1016/S0920-5861(02)00243-2
31.
Nitta
,
Y.
,
Ichikawa
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
2019
, “
Study With Micro-Reactor on Deactivation of Pd Methane Oxidation Catalyst for Marine Lean Burn Gas Engine
,”
J. Jpn. Inst. Mar. Eng.
,
54
(
5
), pp.
99
105
.10.5988/jime.54.765
32.
Nitta
,
Y.
,
Ichikawa
,
Y.
,
Hirata
,
K.
, and
Yamasaki
,
2018
, “
Effect of Water Vapor in Exhaust Gas From Marine Lean Burn Gas Engine on Methane Oxidation of Pd Catalyst
,”
29th Internal Combustion Engine Symposium
,
The Japan Society of Mechanical Engineers
,
Kyoto, Japan
, Nov., No. 26 (in Japanese).
33.
Tanabe
,
T.
,
Nagai
,
Y.
,
Hirabayashi
,
T.
,
Takagi
,
N.
,
Dohmae
,
K.
,
Takahashi
,
N.
,
Matsumoto
,
S.
,
Shinjoh
,
H.
,
Kondo
,
J. N.
,
Schouten
,
J. C.
, and
Brongersma
,
H. H.
,
2009
, “
Low Temperature CO Pulse Adsorption for the Determination of Pt Particle Size in a Pt/Cerium-Based Oxide Catalyst
,”
Appl. Catal. A: General
,
370
(
1–2
), pp.
108
113
.10.1016/j.apcata.2009.09.030
34.
Komai
,
S.
,
Yazawa
,
Y.
,
Satsuma
,
A.
, and
Hattori
,
T.
,
2005
, “
Determination of Metal Dispersion of Pt/CeO2 Catalyst by CO-Pulse Method
,”
J. Jpn. Pet. Inst.
,
48
(
3
), pp.
173
177
.10.1627/jpi.48.173
35.
Arthur
,
J. A.
, and
Marcos Fernändez
,
M. G.
,
2001
,
Supported Metals in Catalysis
, 2nd ed.,
Imperial College Press
,
London, UK
, pp.
53
55
.
36.
Stotz
,
H.
,
Maier
,
L.
,
Boubnov
,
A.
,
Gremminger
,
A. T.
,
Grunwaldt
,
J.-D.
, and
Deutschmann
,
O.
,
2019
, “
Surface Reaction Kinetics of Methane Oxidation Over PdO
,”
J. Catal.
,
370
, pp.
152
175
.10.1016/j.jcat.2018.12.007
37.
Mars
,
P.
, and
van Krevelen
,
D. W.
,
1954
, “
Oxidations carried Out by Means of Vanadium Oxide Catalysts
,”
Chem. Eng. Sci.
,
3
, pp.
41
59
.10.1016/S0009-2509(54)80005-4
38.
Tanabe
,
T.
,
Suda
,
A.
,
Descorme
,
C.
,
Duprez
,
D.
,
Shinjoh
,
H.
, and
Sugiura
,
M.
,
2001
, “
Surface Mobility and Redox Properties: Study of Pt/CeO2-ZrO2 Catalysts
,”
Stud. Surf. Sci. Catal.
,
138
, pp.
135
144
.10.1016/S0167-2991(01)80023-9
39.
Morikawa
,
A.
,
Suzuki
,
T.
,
Kanazawa
,
T.
,
Kikuta
,
K.
,
Suda
,
A.
, and
Shinjo
,
H.
,
2008
, “
A New Concept in High Performance Ceria–Zirconia Oxygen Storage Capacity Material With Al2O3 as a Diffusion Barrier
,”
Appl. Catal. B: Environ.
,
78
(
3–4
), pp.
210
221
.10.1016/j.apcatb.2007.09.013
40.
ISO
,
2010
, “
Determination of the Specific Surface Area of Solids by Gas Adsorption–BET Method
,”
ISO
,
Geneva, Swizerland
,
Standard No. 9277:2010
.https://www.iso.org/standard/44941.html#:~:text=ISO%209277%3A2010%20specifies%20the,and%20Teller%20(BET)%20method.
41.
Tsumaki
,
H.
, and
Shinjou
,
H.
,
1989
, “
Measurement of Metal Dispersion in Cl Free Supported Reference Noble Metal Catalysts by CO-Pulse Method
,”
J. Chem. Soc. Jpn.
,
12
, pp.
1990
1998 (in Japanese
).
42.
Aznarez
,
A.
,
Gil
,
A.
, and
Korili
,
S. A.
,
2015
, “
Performance of Palladium and Platinum Supported on Alumina Pillared Clays in the Catalytic Combustion of Propene
,”
RSC Adv.
,
5
(
100
), pp.
82296
82309
.10.1039/C5RA15675K
43.
Narayanan
,
S.
, and
Krishna
,
K.
,
1998
, “
Hydrotalcite-Supported Palladium Catalysts: Part I: Preparation, Characterization of Hydrotalcites and Palladium on Uncalcined Hydrotalcites for CO Chemisorption and Phenol Hydrogenation
,”
Appl. Catal. A: General
,
174
(
1–2
), pp.
221
229
.10.1016/S0926-860X(98)00190-2
44.
Baylet
,
A.
,
Marécot
,
P.
,
Duprez
,
D.
,
Castellazzi
,
P.
,
Groppi
,
G.
, and
Forzatti
,
P.
,
2011
, “
In Situ Raman and in Situ XRD Analysis of PdO Reduction and Pd° Oxidation Supported on γ-Al2O3 Catalyst Under Different Atmospheres
,”
Phys. Chem. Chem. Phys.
,
13
(
10
), pp.
4607
4613
.10.1039/c0cp01331e
45.
Huu
,
T. P.
,
Gil
,
S.
,
Da Costa
,
P.
,
Giroir-Fendler
,
A.
, and
Khacef
,
A.
,
2015
, “
Plasma-Catalytic Hybrid Reactor: Application to Methane Removal
,”
Catal. Today
,
257
(
P1
), pp.
86
92
.10.1016/j.cattod.2015.03.001
46.
Scherrer
,
P.
,
1918
, “
Bestimmung Der Grösse Und Der Inneren Struktur Von Kolloidteilchen Mittels Röntgenstrahlen
,”
Nachr. Ges. Wiss. Göttingen
,
26
, pp.
387
409
.10.1007/978-3-662-33915-2_7
47.
Langford
,
J. I.
, and
Wilson
,
A. J. C.
,
1978
, “
Scherrer After Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size
,”
J. Appl. Crystal.
,
11
(
2
), pp.
102
113
.10.1107/S0021889878012844
You do not currently have access to this content.