Abstract

The labyrinth seal is one of the most popular noncontact annular seals used in centrifugal compressors to improve machine efficiency by reducing the secondary flow leakage. Reducing the radial clearance Cr can effectively decrease the seal's leakage and therefore increase the machine efficiency. However, reducing Cr can also introduce undesired effects on the machine's vibration behaviors. This paper experimentally studies the impact of reducing Cr on the leakage and rotordynamic coefficients of a 16-tooth see-through labyrinth seal under wet-gas conditions. The test seal's inner diameter is 89.256 mm. Two rotors with different diameters are used to obtain two radial clearances (0.102 mm and 0.178 mm). Tests are carried out at a supply pressure of 62 bars, three speeds from 10 krpm to 20 krpm, three pressure ratios from 0.21 to 0.46, and six inlet liquid volume fractions (LVFs) from zero to 15%. The test fluid is a mixture comprised of air and silicon oil. Test results show that, for all pure-air and mainly air conditions, decreasing Cr decreases (as expected) the test seal's leakage mass flowrate. For all test cases, direct dynamic stiffness K is negative, producing a negative centering force on the associated rotor. For inlet LVF ≤ 8%, the effects of decreasing Cr on K are negligible. When inlet LVF = 12% and 15%, decreasing Cr increases K (decreases the magnitude). In other words, when inlet LVF = 12% and 15%, decreasing Cr reduces the test seal's negative centering force on the rotor, and would increase the critical speeds of the rotor. The value of the effective damping Ceff near 0.5ω represents the seal's capability to suppress the rotor's potential whirling motion at about 0.5ω. For all pure-air and mainly air conditions, decreasing Cr generally increases the Ceff value near 0.5ω; i.e., decreasing Cr improves the test seal's stabilizing capability against the rotor's potential whirling motion at about 0.5ω.

References

1.
Vannini
,
G.
,
Bertoneri
,
M.
,
Del Vescovo
,
G.
, and
Wilcox
,
M.
,
2014
, “
Centrifugal Compressor Rotordynamics in Wet Gas Conditions
,”
Proceedings of the 43rd Turbomachinery Symposium
,
Houston, TX
, Sept. 23–25.10.21423/R1F93J
2.
Vannini
,
G.
,
Bertoneri
,
M.
,
Nielsen
,
K. K.
,
Iudiciani
,
P.
, and
Stronach
,
R.
,
2015
, “
Experimental Results and CFD Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression
,”
ASME Paper No. GT2015-43095
.10.1115/GT2015-43095
3.
Zhang
,
M.
,
Childs
,
D. W.
,
McLean
,
J. E.
,
Tran
,
D. L.
, and
Shrestha
,
H.
,
2019
, “
Experimental Study of the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Two-Phase, Mainly Oil Mixtures
,”
ASME J. Tribol.
,
141
(
4
), p.
042201
.10.1115/1.4042272
4.
Zhang
,
M.
,
Childs
,
D. W.
,
Tran
,
D. L.
, and
Shrestha
,
H.
,
2019
, “
Clearance Effects on Rotordynamic Performance of a Long Smooth Seal With Two-Phase, Mainly-Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
012502
.10.1115/1.4040809
5.
Zhang
,
M.
,
Mclean
,
J. E.
, and
Childs
,
D. W.
,
2017
, “
Experimental Study of the Static and Dynamic Characteristics of a Long Smooth Seal With Two-Phase, Mainly-Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
122504
.10.1115/1.4037607
6.
Zhang
,
M.
,
2017
, “
Experimental Study of the Static and Dynamic Characteristics of a Long (L/D=0.65) Smooth Annular Seal Operating Under Two-Phase (Liquid/Gas) Conditions
,” Ph.D. dissertation,
Texas A&M University
,
College Station, TX
.
7.
Tran
,
D. L.
,
Childs
,
D. W.
,
Shrestha
,
H.
, and
Zhang
,
M.
,
2020
, “
Preswirl and Mixed-Flow (Mainly Liquid) Effects on Rotordynamic Performance of a Long (L/D = 0.75) Smooth Seal
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031012
.10.1115/1.4044291
8.
Zhang
,
M.
,
Childs
,
D. W.
,
Tran
,
D. L.
, and
Shrestha
,
H.
,
2020
, “
A Study on the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Laminar-Two-Phase, Mainly-Oil Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011020
.10.1115/1.4044946
9.
Tran
,
D. L.
,
Childs
,
D. W.
,
Shrestha
,
H.
, and
Zhang
,
M.
,
2020
, “
Test Results for the Static and Rotordynamic Characteristics of a Long (L/D = 0.75) Smooth Seal in Two-Phase (Mainly Gas) Conditions With a 62-Bar Inlet Pressure
,”
ASME
Paper No. GT2020-14118.https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/4689/application/45306
10.
Zhang
,
M.
, and
Childs
,
D.
,
2019
, “
A Study on the Leakage and Rotordynamic Performance of a Long Labyrinth Seal Under Mainly-Air Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121024
.10.1115/1.4045257
11.
Shrestha
,
H.
,
Childs
,
D. W.
,
Tran
,
D. L.
, and
Zhang
,
M.
,
2019
, “
Experimental Study of the Static and Dynamic Characteristics of a Long (L/D=0.75) Labyrinth Annular Seal Operating Under Two-Phase (Liquid/Gas) Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111002
.10.1115/1.4044309
12.
Picardo
,
A. M.
,
2003
, “
High Pressure Testing of See-Through Labyrinth Seals
,”
Master thesis
,
Texas A&M University
,
College Station, TX
.https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2003-THESIS-P53
13.
Childs
,
D. W.
,
McLean
,
J. E.
,
Zhang
,
M.
, and
Arthur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062505
.10.1115/1.4031877
14.
Tao
,
L.
,
Diaz
,
S.
,
AndréS
,
L. S.
, and
Rajagopal
,
K. R.
,
2000
, “
Analysis of Squeeze Film Dampers Operating With Bubbly Lubricants
,”
ASME J. Tribol.
,
122
(
1
), pp.
205
210
.10.1115/1.555344
15.
Mehta
,
N.
,
2012
, “
Comparison of a Slanted-Tooth See-Through Labyrinth Seal to a Straight-Tooth See-Through Labyrinth Seal for Rotordynamic Coefficients and Leakage
,”
Master thesis
,
Texas A&M University
, College Station, TX.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2012-05-10825/MEHTA-THESIS.pdf?sequence=2&isAllowed=y
You do not currently have access to this content.