Abstract

This article reports experiments carried out in the laboratory scale annular combustor MICCA-spray equipped with multiple swirling spray injectors. The experimental setup consists in an air plenum connected to a combustion chamber formed by two concentric cylindrical quartz tubes, allowing full optical access to the flames. A new injection system is introduced and characterized. For a wide range of operating conditions, strong combustion instabilities are observed, but the focus of this article is placed on very high amplitude combustion instabilities coupled by a standing azimuthal mode. New results are obtained using a higher order reconstruction method for the pressure field: its shape is shown to be modified during high amplitude oscillation, leading to asymmetries of the pressure distribution in the system. Flame blow off occurs near the pressure nodal line when a critical level of oscillation is reached. A method is proposed to reconstruct the acoustic velocity field just before blow off occurs and in this way determine the blow off threshold. It is found that the pressure distribution, velocity field, and blow off pattern become asymmetric as the amplitude of oscillation increases and that this process is accompanied by a rapid shift in frequency of oscillation. Another notable result is that the heat release rate in the flames on the same side of the nodal line is not perfectly in phase and that the phase differences become larger as the amplitude of oscillation increases.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
Taylor & Francis
,
Boca Raton, FL
.
2.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Comb. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
3.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Palies
,
P.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2012
, “
Progress and Challenges in Swirling Flame Dynamics
,”
CR Méc.
,
340
(
11–12
), pp.
758
768
.10.1016/j.crme.2012.10.024
4.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
5.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2014
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021503
.10.1115/1.4028257
6.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031503
.10.1115/1.4037824
7.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Comb. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
8.
Worth
,
N. A.
,
Dawson
,
J. R.
,
Sidey
,
J. A.
, and
Mastorakos
,
E.
,
2017
, “
Azimuthally Forced Flames in an Annular Combustor
,”
Proc. Comb. Inst.
,
36
(
3
), pp.
3783
3790
.10.1016/j.proci.2016.06.107
9.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. London A
,
469
(
2151
), p.
20120535
.10.1098/rspa.2012.0535
10.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
7
), pp.
99
128
.10.1080/00102200208984089
11.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.10.1115/1.4025761
12.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
13.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
191
206
.10.1007/s10494-011-9367-7
14.
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
15.
Mazur
,
M.
,
Nygård
,
H. T.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2019
, “
Characteristics of Self-Excited Spinning Azimuthal Modes in an Annular Combustor With Turbulent Premixed Bluff-Body Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5129
5136
.10.1016/j.proci.2018.07.080
16.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-Acoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3219
3227
.10.1016/j.proci.2014.05.053
17.
Bauerheim
,
M.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Symmetry Breaking of Azimuthal Thermo-Acoustic Modes in Annular Cavities: A Theoretical Study
,”
J. Fluid Mech.
,
760
, pp.
431
465
.10.1017/jfm.2014.578
18.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. London A
,
469
(
2157
), p.
20130232
.
19.
Orchini
,
A.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2018
, “
Effects of Nonlinear Modal Interactions on the Thermoacoustic Stability of Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021002
.10.1115/1.4040768
20.
Moeck
,
J. P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Nonlinear Thermoacoustic Mode Synchronization in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5343
5350
.10.1016/j.proci.2018.05.107
21.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
22.
Laera
,
D.
, and
Camporeale
,
S. M.
,
2017
, “
A Weakly Nonlinear Approach Based on a Distributed Flame Describing Function to Study the Combustion Dynamics of a Full-Scale Lean-Premixed Swirled Burner
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
091501
.10.1115/1.4036010
23.
Laera
,
D.
,
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051505
.10.1115/1.4035207
24.
Mensah
,
G. A.
,
Magri
,
L.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2018
, “
Effects of Asymmetry on Thermoacoustic Modes in Annular Combustors: A Higher-Order Perturbation Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041030
.10.1115/1.4041007
25.
Juniper
,
M. P.
, and
Sujith
,
R.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
26.
Bauerheim
,
M.
,
Staffelbach
,
G.
,
Worth
,
N. A.
,
Dawson
,
J. R.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2015
, “
Sensitivity of LES-Based Harmonic Flame Response Model for Turbulent Swirled Flames and Impact on the Stability of Azimuthal Modes
,”
Proc. Comb. Inst.
,
35
(
3
), pp.
3355
3363
.10.1016/j.proci.2014.07.021
27.
Fanaca
,
D.
,
Alemela
,
P. R.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2009
, “
Comparison of the Flow Fields of a Swirl Stabilised Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME
Paper No. GT2009-59884. 10.1115/GT2009-59884
28.
De Rosa
,
A. J.
,
Peluso
,
S. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2015
, “
The Effect of Confinement on the Structure and Dynamic Response of Lean-Premixed, Swirl-Stabilized Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
051505
.10.1115/1.4031885
29.
Bonciolini
,
G.
,
Ebi
,
D.
,
Doll
,
U.
,
Weilenmann
,
M.
, and
Noiray
,
N.
,
2019
, “
Effect of Wall Thermal Inertia Upon Transient Thermoacoustic Dynamics of a Swirl-Stabilized Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5351
5358
.10.1016/j.proci.2018.06.229
30.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.10.1016/j.combustflame.2013.03.004
31.
Bourgouin
,
J.-F.
,
Moeck
,
J.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Sensitivity of Swirling Flows to Small Changes in the Swirler Geometry
,”
CR Méc.
,
341
(
1–2
), pp.
211
219
.10.1016/j.crme.2012.10.018
32.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
33.
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2016
, “
Progress in Analytical Methods to Predict and Control Azimuthal Combustion Instability Modes in Annular Chambers
,”
Phys. Fluids
,
28
(
2
), p.
021303
.10.1063/1.4940039
34.
Baillot
,
F.
, and
Lespinasse
,
F.
,
2014
, “
Response of a Laminar Premixed V-Flame to a High-Frequency Transverse Acoustic Field
,”
Combust. Flame
,
161
(
5
), pp.
1247
1267
.10.1016/j.combustflame.2013.11.009
35.
Lespinasse
,
F.
,
Baillot
,
F.
, and
Boushaki
,
T.
,
2013
, “
Responses of V-Flames Placed in an HF Transverse Acoustic Field From a Velocity to Pressure Antinode
,”
CR Méc.
,
341
(
1–2
), pp.
110
120
.10.1016/j.crme.2012.10.015
36.
Durox
,
D.
,
Prieur
,
K.
,
Schuller
,
T.
, and
Candel
,
S.
,
2016
, “
Different Flame Patterns Linked With Swirling Injector Interactions in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
101504
.10.1115/1.4033330
37.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor
,”
Combust. Flame
,
175
, pp.
283
291
.10.1016/j.combustflame.2016.05.021
38.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
, Applied Science Publishers Ltd., London.
39.
Mirat
,
C.
,
Durox
,
D.
, and
Schuller
,
T.
,
2014
, “
Analysis of the Spray and Transfer Function of Swirling Spray Flames From a Multi-Jet Steam Assisted Liquid Fuel Injector
,”
ASME
Paper No. GT2014-25111. 10.1115/GT2014-25111
40.
Mirat
,
C.
,
Durox
,
D.
, and
Schuller
,
T.
,
2015
, “
Stability Analysis of a Swirl Spray Combustor Based on Flame Describing Function
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3291
3298
.10.1016/j.proci.2014.08.020
41.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.10.1016/j.proci.2014.06.029
42.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
43.
Zinn
,
B.
, and
Powell
,
E.
,
1970
, “
Application of the Galerkin Method in the Solution of Combustion Instability Problems
,”
Proceedings of the Nineteenth International Astronautical Congress on Propulsion
, pp.
59
73
.
44.
Culick
,
F. E. C.
,
1976
, “
Nonlinear Behavior of Acoustic Waves in Combustion Chambers-I
,”
Acta Astronaut.
,
3
(
9–10
), pp.
715
734
.10.1016/0094-5765(76)90107-7
45.
Culick
,
F. E. C.
,
1988
, “
Combustion Instabilities in Liquid-Fueled Propulsion System—An Overview
,”
AGARD 72B Specialists' Meeting of the Propulsion and Energetics Panel 450
, Bath, UK, AGARD Conf. Proceedings No. 450,1988.
46.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed., Toulouse, France.
47.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, p.
139
.10.1017/S0022112008003613
You do not currently have access to this content.