This paper presents detailed analysis of an experimental investigation of the impact of swirl number of subsonic cross-flowing air stream on liquid jet breakup at an airflow Mach number of 0.12, which is typical in gas turbine conditions. Experiments are performed for four different swirl numbers (0, 0.2, 0.42, and 0.73) using swirl vanes at air inlet having angles of 0 deg, 15 deg, 30 deg, and 45 deg, respectively. Liquid to air momentum flux ratios (q) have been varied from 1 to 25. High-speed images of the interaction of liquid and air streams are captured and processed to estimate the jet penetration height as well as the breakup location for various flow conditions. The results show unique behavior for each swirl number, which departs from the straight flow correlations available in the literature. Based on the results, an attempt has been made to understand the physics of the phenomena and come up with a simplified physical model for prediction of jet penetration. Furthermore, the high-speed images show a dominant influence of liquid column fluttering on fracture mechanism (column or shear breakup mechanism).

References

1.
Dahm
,
W. J. A.
,
Patel
,
P. R.
, and
Lerg
,
B. H.
,
2002
, “
Visualization and Fundamental Analysis of Liquid Atomization by Fuel Slingers in Small Gas Turbine Engines
,”
AIAA
Paper No.
2002
3183
.
2.
Lee
,
D.
,
You
,
G.
,
Choi
,
S.
, and
Huh
,
H.
,
2011
, “
Analysis of Formation and Breakup Mechanisms in Rotary Atomization Through Spray Visualization
,”
J. Visualization
,
14
(
3
), pp.
273
283
.
3.
Chelko
,
L. J.
,
1950
, “
Penetration of Liquid Jets Into a High Velocity Air Stream
,” NACA, Washington, DC, Report No. RM E50F21.
4.
Ingebo
,
R. D.
, and
Foster
,
H. H.
,
1957
, “
Drop Size Distribution for Cross Current Breakup of Liquid Jets in Air Streams
,” NACA, Cleveland, Ohio, Report No. TN 4087.
5.
Wu
,
P.-K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jet in Subsonic Cross Flows
,”
J. Propul. Power
,
13
(
1
), p.
64
.
6.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Nejad
,
A. S.
, and
Fuller
,
R. P.
,
1998
, “
Spray Structures of Liquid Jets Atomized in Subsonic Cross Flows
,”
J. Propul. Power
,
14
(
2
), pp.
173
182
.
7.
Ranger
,
A. A.
, and
Nicholls
,
J. A.
,
1968
, “
The Aerodynamic Shattering of Liquid Drops
,” AIAA Paper No. 68-83.
8.
Tambe
,
S. B.
,
Jeng
,
S. M.
,
Mongia
,
H.
, and
Hsaio
,
G.
,
2005
, “
Liquid Jets in Subsonic Cross Flows
,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, pp. 10–13.
9.
Aalburg
,
C.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
,
2004
, “
Breakup of Round Non-Turbulent Liquid Jets in Gaseous Cross Flows
,” AIAA Paper No.12.
10.
Aalburg
,
C.
,
van Leer
,
B.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
,
2005
, “
Properties of Non-Turbulent Round Liquid Jets in Uniform Gaseous Cross Flows
,”
Atomization Sprays
,
15
(
3
), pp.
271
294
.
11.
Ng
,
C. L.
,
Sankarakrishnan
,
R.
, and
Sallam
,
K. A.
,
2008
, “
Bag Breakup of Non-Turbulent Liquid Jets in Cross Flow
,”
J. Multiphase Flow
,
34
(
3
), pp.
241
259
.
12.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
,
1999
, “
Primary Breakup of Non-Turbulent Round Liquid Jets in Gas Cross Flows
,”
Atomization Sprays
,
9
(
3
), pp.
291
312
.
13.
Birouk
,
M.
,
Azzopardi
,
B.
, and
Stabler
,
T.
,
2003
, “
Primary Breakup of a Viscous Liquid Jet in a Cross Airflow
,”
Part. Part. Syst. Charact.
,
20
(
4
), pp.
283
289
.
14.
Becker
,
J.
, and
Hassa
,
C.
,
2002
, “
Breakup and Atomization of a Kerosene Jet in Cross ow at Elevated Pressure
,”
Atomization Sprays
,
12
(
1–3
), pp.
49
67
.
15.
Ryan
,
M. J.
,
2006
, “
CFD Prediction of the Trajectory of a Liquid Jet in a Non-Uniform Air Crossflow
,”
Comput. Fluids
,
35
(
5
), pp.
463
476
.
16.
Pai
,
M. G.
,
Pitsh
,
H.
, and
Desjardins
,
O.
,
2009
, “
Detailed Numerical Simulations of Primary Atomization Liquid Jets in Cross Flow
,”
AIAA
Paper No.
2009
373
.
17.
Yadav
,
N. P.
, and
Kushari
,
A.
,
2010
, “
Effect of Swirl on the Turbulent Behavior of a Dump Combustor Flow
,”
Proc. Inst. Mech. Eng., Part G
,
224
, pp.
705
717
.
18.
Ahmed
,
S. A.
,
1998
, “
Velocity Measurements and Turbulence Statistics of a Confined Isothermal Swirling Flow
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
256
264
.
19.
Grundmann
,
S.
,
Jung
,
B.
,
Tropea
,
C.
,
Wassermann
,
F.
, and
Lorenz
,
R.
,
2012
, “
Experimental Investigation of Helical Structures in Swirling Flows
,”
J. Heat Fluid Flow
,
37
, pp.
51
63
.
20.
Tambe
,
S. B.
,
2010
, “
Liquid Jets Injected Into Non-Uniform Crossflow
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
21.
Sikroria
,
T.
,
Kushari
,
A.
,
Syed
,
S.
, and
Lovett
,
J. A.
,
2014
, “
Experimental Investigation of Liquid Jet Breakup in a Cross Flow of a Swirling Air Stream
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061501
.
22.
Wang
,
Q.
,
Mondragon
,
U. M.
,
Brown
,
C. T.
, and
McDonell
,
V. G.
,
2011
, “
Characterization of Trajectory, Beak Point, and Break Point Dynamics of a Plain Liquid Jet in a Crossflow
,”
Atomization Sprays
,
21
(
3
), pp.
203
219
.
You do not currently have access to this content.