Radial inflow turbines, characterized by a low specific speed, are a candidate architecture for the supercritical CO2 Brayton cycle at small scale, i.e., less than 5 MW. Prior cycle studies have identified the importance of turbine efficiency to cycle performance; hence, well-designed turbines are key in realizing this new cycle. With operation at high Reynolds numbers, and small scales, the relative importance of loss mechanisms in supercritical CO2 turbines is not known. This paper presents a numerical loss investigation of a 300 kW low specific speed radial inflow turbine operating on supercritical CO2. A combination of steady-state and transient calculations is used to determine the source of loss within the turbine stage. Losses are compared with preliminary design approaches, and geometric variations to address high loss regions of stator and rotor are trialed. Analysis shows stage losses to be dominated by endwall viscous losses in the stator. These losses are more significant than predicted using gas turbine derived preliminary design methods. A reduction in stator–rotor interspace and modification of the blade profile showed a significant improvement in stage efficiency. An investigation into rotor blading shows favorable performance gains through the inclusion of splitter blades. Through these, and other modifications, a stage efficiency of 81% is possible, with an improvement of 7.5 points over the baseline design.

References

1.
Angelino
,
G.
,
1967
, “
Perspectives for the Liquid Phase Compression Gas Turbine
,”
ASME J. Eng. Power
,
89
(
2
), pp.
229
236
.
2.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
3.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
K.
Brun
,
P.
Friedman
, and
R.
Dennis
, eds.,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
, 1st ed.,
Woodhead Publishing
,
Cambridge, UK
.
5.
ASTRI
,
2017
, “
ASTRI Milestone 12 Report—For Public Dissemination
,” Australian Solar Thermal Research Initiative,
Newcastle, Australia
, Report No. 1-SRI002.
6.
Moore
,
J.
,
Brun
,
K.
,
Evans
,
N.
, and
Kalra
,
C.
,
2015
, “
Development of 1 MWe Supercritical CO2 Test Loop
,”
ASME
Paper No. GT2015-43771.
7.
Wilkes
,
J.
,
Allison
,
T.
,
Schmitt
,
J.
,
Bennett
,
J.
,
Wyagant
,
K.
,
Pelton
,
R.
, and
Bosen
,
W.
,
2016
, “
Application of an Integrally Geared Compander to an sCO2 Recompression Brayton Cycle
,”
Fifth International Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
, Mar. 28–31, Paper No. 055.http://www.sco2symposium.com/www2/sco2/papers2016/Turbomachinery/055paper.pdf
8.
Balje
,
O.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines—Part A: Similarity Relations and Design Criteria of Turbines
,”
J. Eng. Power
,
84
(
1
), pp.
83
102
.
9.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.
10.
Wheeler
,
A. P. S.
, and
Ong
,
J.
,
2014
, “
A Study of the Three-Dimensional Unsteady Real-Gas Flows Within a Transonic Orc Turbine
,”
ASME
Paper No. GT2014-25475.
11.
Pini
,
M.
,
De Servi
,
C.
,
Burigana
,
M.
,
Bahamonde
,
S.
,
Rubino
,
A.
,
Vitale
,
S.
, and
Colonna
,
P.
,
2017
, “
Fluid-Dynamic Design and Characterization of a Mini-ORC Turbine for Laboratory Experiments
,”
Energy Procedia
,
129
, pp.
1141
1148
.
12.
Reddell
,
T.
,
Ventura
,
C.
,
Rowlands
,
A.
,
Qi
,
J.
,
Jacobs
,
P.
, and
Jahn
,
I.
,
2016
, “
Topgen: Radial Inflow Turbine Model—User Guide and Example Book
,” School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia.
13.
Qi
,
J.
,
Reddell
,
T.
,
Qin
,
K.
,
Hooman
,
K.
, and
Jahn
,
I.
,
2017
, “
Supercritical CO2 Radial Turbine Design Performance as a Function of Turbine Size Parameters
,”
ASME J. Turbomach.
,
139
(
8
), p.
081008
.
14.
Ventura
,
C. A.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031102
.
15.
Futral
,
S. M.
, Jr.
, and
Holeski
,
D. E.
,
1970
, “
Experimental Results of Varying the Blade-Shroud Clearance in a 6.02-Inch Radial-Inflow Turbine
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Report No. TN D-5513.
16.
Meijboom
,
L.
,
2017
, “
Development of a Turbine Concept for Supercritical CO2 Power Cycles
,”
Master thesis
,
TU Delft, Delft
,
The Netherlands
.https://repository.tudelft.nl/islandora/object/uuid%3Aee6a6c8b-eb5a-4a3c-bec7-047350c2cfa6
17.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
,
Design of Radial Turbomachines
,
Wiley
,
New York
.
18.
Whitfield
,
A.
,
1990
, “
The Preliminary Design of Radial Inflow Turbines
,”
ASME J. Turbomach.
,
112
(
1
), pp.
50
57
.
19.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science Ltd.
,
Oxford, UK
.
20.
Rohlik
,
H. E.
,
1968
, “
Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency
,”
National Aeronautics and Space Administration
,
Lewis Research Center
,
Cleveland, OH
, Report No. TN D-4384.
21.
Simpson
,
A.
,
Spence
,
S.
, and
Watterson
,
J.
,
2013
, “
Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space and Vane Solidity in Radial Turbine Stators
,”
ASME J. Turbomach.
,
135
(
3
), p.
021017
.
22.
Keep
,
J.
,
2017
, “
Radial Inflow Turbine Nozzle Guide Vane Design Tool
,” School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia, Report No. 2014/18.
23.
Hiett
,
G.
, and
Johnston
,
I.
,
1964
, “
Paper 7: Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines
,”
Institution of Mechanical Engineers Conference
,
Cambridge, UK
, Apr. 9–10, pp.
28
42
.
24.
Glassman
,
A. J.
,
1976
, “
Computer Program for Design Analysis of Radial-Inflow Turbines
,”
National Aeronautics and Space Administration
,
Lewis Research Center
,
Cleveland, OH
, Report No. TN D-8164.
25.
Kofskey
,
M. G.
, and
Nusbaum
,
W. J.
,
1972
, “
Effects of Specific Speed on Experimental Performance of a Radial-Inflow Turbine
,”
National Aeronautics and Space Administration
,
Lewis Research Center
,
Cleveland, OH
, Report No. TN D-6605.
26.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
, Vol.
2
,
Concepts NREC
,
White River Junction, VT
.
27.
ANSYS
,
2018
, “
CFX Solver Theory Guide 18.1
,”
ANSYS
,
Canonsburg, PA
.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
30.
White
,
M.
, and
Sayma
,
A. I.
,
2015
, “
The Application of Similitude Theory for the Performance Prediction of Radial Turbines Within Small-Scale Low-Temperature Organic Rankine Cycles
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122605
.
31.
Maki
,
H.
, and
Mori
,
Y.
,
1973
, “
On the Study of the Flow Through an Impeller of Mixed and Inward-Flow Radial Turbines: 3rd Report, Interference With the Flow From the Circular Nozzle
,”
Bull. JSME
,
16
(
91
), pp.
81
92
.
32.
Schobeiri
,
M. T.
,
2012
,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer-Verlag
,
Berlin
.
33.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
34.
Wygnanski
,
I.
,
Champagne
,
F.
, and
Marasli
,
B.
,
1986
, “
On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes
,”
J. Fluid Mech.
,
168
(
1
), pp.
31
71
.
35.
Galiana
,
F. J. D.
,
Wheeler
,
A. P.
, and
Ong
,
J.
,
2016
, “
A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines
,”
ASME J. Turbomach.
,
138
(
12
), p.
121003
.
36.
Jones
,
A. C.
,
1996
, “
Design and Test of a Small, High Pressure Ratio Radial Turbine
,”
ASME. J. Turbomach.
,
118
(2), pp.
362
370
.
37.
Dambach
,
R.
,
Hodson
,
H.
, and
Huntsman
,
I.
,
1998
, “
An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine
,”
ASME
Paper No. 98-GT-467.
38.
Jahn
,
I.
, and
Keep
,
J.
,
2017
, “
On the Off-Design Performance of Supercritical Carbon Dioxide Power Cycles
,” Shanghai 2017 GPPF,
Shanghai, China
, Oct. 31–Nov. 1, Paper No. GPPS-2017-0049.
You do not currently have access to this content.