An advanced numerical framework to model CO2 compressors over a wide range of subcritical conditions is presented in this paper. Thermodynamic and transport properties are obtained through a table look-up procedure with specialized features for subcritical conditions. Phase change is triggered by the difference between the local values of pressure and saturation pressure, and both vaporization and condensation can be modeled. Rigorous validation of the framework is presented for condensation in high pressure CO2 using test data in a De Laval nozzle. The comparisons between computations and test data include: condensation onset locations, Wilson line, and nozzle pressure profiles as a function of inlet pressures. The framework is applied to the Sandia compressor that has been modeled over broad range of conditions spanning the saturation dome including: near critical inlet conditions (305.4 K, and 7.843 MPa), pure liquid inlet conditions (at 295 K), pure vapor inlet conditions (at 302 K), and two-phase inlet conditions (at 290 K). Multiphase effects ranging from cavitation at the liquid line to condensation at the vapor line have been simulated. The role of real fluid effects in enhancing multiphase effects at elevated temperatures closer to the critical point has been identified. The performance of the compressor has been compared with test data; the computational fluid dynamics (CFD) results also show that the head-flow coefficient curve collapses with relatively minor scatter, similar to the test data, when the flow coefficient is defined on the impeller exit meridional velocity.

References

1.
Wright
,
S. A.
,
Radel
,
R. F.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
,
2011
, “
Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles
,” SANDIA, Albuquerque, NM, Report No.
SAND2010-8840
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2010/108840.pdf
2.
Pelton
,
R.
,
Allison
,
T.
,
Jung
,
S.
, and
Smith
,
N.
,
2017
, “
Design of a Wide-Range Centrifugal Compressor Stage for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2017-65172.
3.
Noall
,
J. S.
, and
Pasch
,
J. J.
,
2014
, “
Achievable Efficiency and Stability of Supercritical CO2 Compression Systems
,”
Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Sept. 9–10, Paper No. 51.
4.
Hayton
,
J.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
(
Woodhead Publishing Series in Energy
),
Klaus
Brun
,
Peter
Friedman
, and
Richard
Dennis
, eds., Elsevier, Cambridge, MA.
5.
Qian
,
J. W.
,
Privat
,
R.
, and
Jaubert
,
J. N.
,
2013
, “
Predicting the Phase Equilibria, Critical Phenomena, and Mixing Enthalpies of Binary Aqueous Systems Containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N2, CO2, H2S, H2) With the PPR78 Equation of State
,”
Ind. Eng. Chem. Res.
,
52
(
46
), pp.
16457
16490
.
6.
Pecnik
,
R.
,
Rinaldi
,
R.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.
7.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2015
, “
Computational Fluid Dynamic Simulation of a Supercritical CO2 Compressor Performance Map
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072602
.
8.
Baltadjiev
,
N.
,
Lettieri
,
C.
, and
Spakovszky
,
Z.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.
9.
Ameli
,
A.
,
Afzalifar
,
A.
,
Turenen-Saaresti
,
T.
, and
Backman
,
J.
,
2017
, “
Effects of Real Gas Model Accuracy and Operating Conditions on the Supercritical CO2 Compressor Performance and Flowfield
,”
ASME
Paper No. GT2017-63570.
10.
Moraga
,
F.
,
Hofer
,
D.
,
Saxena
,
S.
, and
Mallina
,
R.
, “
Numerical Approach for Real Gas Simulations—Part I: Tabular Fluid Properties for Real Gas Analysis
,”
ASME
Paper No. GT2018-75592.
11.
Saxena
,
S.
,
Mallina
,
R.
,
Moraga
,
F.
, and
Hofer
,
D.
,
2017
, “
Numerical Approach for Real Gas Simulations—Part II: Flow Simulation for Supercritical CO2 Centrifugal Compressor
,”
ASME
Paper No. GT2017-63149.
12.
NIST Boulder Laboratories,
2016
, “
NIST: Thermophysical Properties of Fluid Systems
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Oct., 2016, https://webbook.nist.gov/chemistry/fluid/
13.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.
14.
Lettieri
,
C.
,
Paxson
,
D.
,
Spakovszky
,
Z.
, and
Bryanstron-Cross
,
P.
,
2017
, “
Characterization of Non-Equilibrium Condensation of Supercritical Carbon Dioxide in a De Laval Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
140
(4), p. 041701.
15.
Hosangadi
,
A.
,
Sachdev
,
J.
, and
Venkateswaran
,
S.
,
2012
, “
Improved Flux Formulations for Unsteady Low Mach Number Flows
,”
Seventh International Conference on Computational Fluid Dynamics
, Big Island, HI, July 9–13, Paper No. ICCFD7-2202.
16.
Venkateswaran
,
S.
, and
Merkle
,
C. L.
,
1999
, “
Analysis of Preconditioning Methods for the Euler and Navier-Stokes Equation
,”
VKI Lecture Series Monographs on Computational Fluid Dynamics
, H. Deconinck, ed.,
von Karman Institute
, Sint-Genesius-Rode, Belgium.
17.
Hosangadi
,
A.
,
Lee
,
C. P.
,
Kannepalli
,
C.
, and
Arunajatesan
,
S.
,
2008
, “
Three Dimensional Hybrid RANS/LES Simulations of a Supercritical Liquid Nitrogen Jet
,”
AIAA
Paper No. 2008-5227.
18.
Hosangadi
,
A.
,
Ahuja
,
V.
,
Ungewitter
,
R. J.
, and
Busby
,
J.
,
2007
, “
Analysis of Thermal Effects in Cavitating Liquid Hydrogen Inducer
,”
J. Propul. Power
,
23
(
6
), pp.
1225
1234
.
19.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Ungewitter
,
R. J.
,
2007
, “
Simulations of Rotational Cavitation Instabilities in the SSME LPFP Inducer
,”
AIAA
Paper No. 2007-5536.
20.
Arunajatesan
,
S.
, and
Sinha
,
N.
,
2003
, “
Hybrid RANS-LES Modeling for Cavity Aeroacoustics Predictions
,”
Int. J. Aeroacoustics
,
2
(
1
), pp.
65
91
.
21.
Hosangadi
,
A.
,
Weathers
,
T.
,
Liu
,
Z.
, and
Ahuja
,
V.
,
2018
, “
Numerical Simulations of CO2 Compressors at Near Critical and Sub-Critical Inlet Conditions
,”
ASME
Paper No. GT2018-75102.
22.
McDonald
,
J. E.
,
1962
, “
Homogeneous Nucleation of Vapour Condensation—I: Thermodynamic Aspects
,”
Am. J. Phys.
,
30
(
12
), pp.
870
877
.
23.
Young
,
J. B.
,
1991
, “
The Condensation and Evaporation of Liquid Droplets in a Pure Vapour at Arbitrary
,”
Int. J. Heat Mass Transfer
,
34
(
7
), pp.
1649
1661
.
You do not currently have access to this content.