Compression systems are widely employed in gas turbine engines, turbocharged engines, and industry compression plants. The stable work of compression systems is an essential precondition for engine performance and safety. A compression system in practice usually consists of upstream and downstream pipes, compressors, plenums and throttles. When a compression system encounters the surge, the flows in the compressor present complex three-dimensional patterns but the flows of other components might present relatively simple one-dimensional patterns. Based on these flow characteristics, this paper proposes a novel simulation method, where one-dimensional and three-dimensional (1D–3D) calculations are coupled, to predict the surge boundary of centrifugal compressors. To validate this method, a high-speed centrifugal compressor is studied both by the proposed 1D–3D coupled method and experimentally. The results show that the differences between the predicted and experimentally determined stable flow range are lower than 5% until the Mach number of blade outlet tip tangential velocity reaches around 1.3. Besides, this method can correctly predict the instantaneous compressor performance during the surge cycle, so it can also be used to explore the surge mechanism and evaluate the blade dynamic force response in the future.

References

1.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
22605
.
2.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Tommaso Rubino
,
D.
, and
Toni
,
L.
,
2016
, “
Effects of Impeller Squealer Tip on Centrifugal Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
32603
.
3.
Theotokatos
,
G.
, and
Kyrtatos
,
N. P.
,
2016
, “
Investigation of a Large High-Speed Diesel Engine Transient Behavior Including Compressor
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
580
589
.
4.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
11001
.
5.
Brun
,
K.
,
Simons
,
S.
,
Kurz
,
R.
,
Munari
,
E.
, and
Pinelli
,
M.
,
2018
, “
Measurement and Prediction of Centrifugal Compressor Axial Forces During Surge—Part I: Surge Force Measurements
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
12601
.
6.
Munari
,
E.
,
Pinelli
,
M.
,
Brun
,
K.
,
Simons
,
S.
, and
Kurz
,
R.
,
2018
, “
Measurement and Prediction of Centrifugal Compressor Axial Forces During Surge—Part II: Dynamic Surge Model
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
12602
.
7.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
103
(
4
), pp.
645
656
.
8.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison
,”
ASME J. Eng. Power
,
98
(
2
), pp.
199
211
.
9.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.
10.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Part I: Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.
11.
Greitzer
,
E. M.
, and
Moore
,
F. K.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.
12.
Hansen
,
K. E.
,
Jorgensen
,
P.
, and
Larsen
,
P. S.
,
1981
, “
Experimental and Theoretical Study of Surge in a Small Centrifugal Compressor
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
391
395
.
13.
Hiradate
,
K.
,
Joukou
,
S.
,
Sakamoto
,
K.
,
Shinkawa
,
Y.
, and
Uchiyama
,
T.
,
2016
, “
Investigation on Pressure Fluctuation Related to Mild Surge in Multistage Centrifugal Blower With Inlet Guide Vane
,”
ASME J. Turbomach.
,
138
(
11
), p.
111003
.
14.
Longley
,
J. P.
, and
Hynes
,
T. P.
,
1990
, “
Stability of Flow Through Multistage Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
126
132
.
15.
Sun
,
X.
,
Ma
,
Y.
,
Liu
,
X.
, and
Sun
,
D.
,
2016
, “
Flow Stability Model of Centrifugal Compressors Based on Eigenvalue Approach
,”
AIAA J.
,
54
(
8
), pp.
2361
2376
.
16.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structurs in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), p.
735
.
17.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
11023
.
18.
Ma¨rz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
375
.
19.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
51007
.
20.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2012
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
11025
.
21.
Tamaki
,
H.
,
2008
, “
Effect of Piping Systems on Surge in Centrifugal Compressor
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1857
1863
.
22.
Spakovszky
,
Z. S.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor 1
,”
ASME J. Turbomach.
,
131
(
7
), p.
31012
.
23.
Bozza
,
F.
,
De Bellis
,
V.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines Under Unsteady Flow Conditions
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1365
1384
.
24.
White
,
F. M.
,
2008
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
25.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
The Macmillan Press Ltd
, London, UK.
26.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing Company
, Malabar, FL.
27.
Anderson
,
J. D.
,
2003
,
Modern Compressible Flow With Historical Perspective
,
McGraw-Hill Higher Education
, New York.
28.
Argyropoulos
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Model.
,
39
(
2
), pp.
693
732
.
29.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2017
, “
Experimental Investigation of Surge and Stall in a Turbocharger Centrifugal Compressor With a Vaned Diffuser
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
493
506
.
30.
Zheng
,
X.
, and
Liu
,
A.
,
2015
, “
Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
8
), p.
81007
.
31.
ANSYS,
2016
, “CFX-Solver Theory Guide, ANSYS CFX Release 16.1,”
ANSYS
, Cannosburg, PA.
32.
Liu
,
A.
, and
Zheng
,
X.
,
2013
, “
Methods of Surge Point Judgment for Compressor Experiments
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
204
213
.
33.
Zheng
,
X.
, and
Liu
,
A.
,
2015
, “
Experimental Investigation of Surge and Stall in a High-Speed Centrifugal Compressor
,”
J. Propuls. Power
,
31
(
3
), pp.
815
825
.
34.
Sun
,
Z.
,
Zheng
,
X.
, and
Kawakubo
,
T.
,
2018
, “
Experimental Investigation of Instability Inducement and Mechanism of Centrifugal Compressors With Vaned Diffuser
,”
Appl. Therm. Eng.
,
133
, pp.
464
471
.
35.
De Bellis
,
V.
, and
Bontempo
,
R.
,
2018
, “
Development and Validation of a 1D Model for Turbocharger Compressors Under Deep-Surge Operation
,”
Energy
,
142
, pp.
507
517
.
36.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Brun
,
K.
,
Simons
,
S.
, and
Kurz
,
R.
,
2018
, “
A New Index to Evaluate the Potential Damage of a Surge Event: The Surge Severity Coefficient
,”
ASME
Paper No. GT2018-76185.
37.
Zheng
,
X.
, and
Huang
,
Q.
,
2015
, “
Potential of the Range Extension of Compressors With a Variable Inlet Prewhirl for Automotive Turbocharged Engines With an Ultra-High-Power Density
,”
Proc. Inst. Mech. Eng. Part D
,
229
(
14
), pp.
1959
1968
.
38.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
You do not currently have access to this content.