Heavy-duty compression–ignition (CI) engines converted to natural gas (NG) spark ignition (SI) operation have the potential to increase the use of NG in the transportation sector. A three-dimensional (3D) numerical simulation was used to predict how the conventional CI combustion chamber geometry (i.e., re-entrant bowl and flat head) affects the combustion stability, performance, and emissions of a single-cylinder CI engine that was converted to SI operation by adding a low-pressure gas injector in the intake manifold and a spark plug in place of the diesel injector. The G-equation based 3D computational fluid dynamics (CFD) simulation investigated three different combustion chamber configurations that change the size of the squish region at a constant compression ratio (CR) and a clearance height. The results show that the different flame propagation speeds inside and outside the re-entrant bowl can create a two-zone combustion phenomenon. Moreover, a larger squish region increased the flame burning speed, which decreased late-combustion duration (DOC). All these findings support the need for further investigations of the combustion chamber shape design for optimum engine performance and emissions in CI engines converted to NG SI operation.

References

1.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Combustion Visualization in a Single-Cylinder Heavy-Duty CI Engine Converted to Natural Gas SI Operation
,”
Spring Technical Meeting Eastern States Section of the Combustion Institute
, State College, PA, Mar. 4–7, Paper No. 3C06.
2.
Gupta
,
M.
,
Bell
,
S.
, and
Tillman
,
S.
,
1996
, “
An Investigation of Lean Combustion in a Natural Gas-Fueled Spark-Ignited Engine
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
145
151
.
3.
Xu
,
H.
, and
LaPointe
,
L. A.
,
2015
, “
Combustion Characteristics of Lean Burn and Stoichiometric With Exhaust Gas Recirculation Spark-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111511
.
4.
Weaver
,
C. S.
,
1989
, “
Natural Gas Vehicles—A Review of the State of the Art
,”
SAE
Paper No. 892133.
5.
Beck
,
N. J.
,
1990
, “
Natural Gas—A Rational Approach to Clean Air
,”
SAE
Paper No. 902228.
6.
Dumitrescu
,
C. E.
,
Padmanaban
,
V.
, and
Liu
,
J.
,
2018
, “
An Experimental Investigation of Early Flame Development in an Optical SI Engine Fueled With Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082802
.
7.
Jones
,
M. G. K.
, and
Heaton
,
D. M.
,
1989
, “
Nebula Combustion System for Lean Burn Spark Ignited Gas Engines
,”
SAE
Paper No. 890211.
8.
B Bommisetty
,
H.
,
Liu
,
J.
,
Kooragayala
,
R.
, and
Dumitrescu
,
C. E.
,
2018
, “
Fuel Composition Effects in a CI Engine Converted to SI Natural Gas Operation
,”
SAE
Paper No. 2018-01-1137.
9.
Germane
,
G. J.
,
Wood
,
C. G.
, and
Hess
,
C. C.
,
1983
, “
Lean Combustion in Spark-Ignited Internal Combustion Engines—A Review
,”
SAE
Paper No. 831694.
10.
McTaggart-Cowan
,
G. P.
,
Rogak
,
S. N.
,
Munshi
,
S. R.
,
Hill
,
P. G.
, and
Bushe
,
W. K.
,
2010
, “
The Influence of Fuel Composition on a Heavy-Duty, Natural-Gas Direct-Injection Engine
,”
Fuel
,
89
(
3
), pp.
752
759
.
11.
Kakaee
,
A.-H.
,
Paykani
,
A.
, and
Ghajar
,
M.
,
2014
, “
The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
64
78
.
12.
Goto
,
S.
,
Lee
,
D.
,
Shakal
,
J.
,
Harayama
,
N.
,
Honjyo
,
F.
, and
Ueno
,
H.
,
1999
, “
Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles
,”
SAE
Paper No. 1999-01-1513.
13.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
14.
Yan
,
B.
,
Wang
,
H.
,
Zheng
,
Z.
,
Qin
,
Y.
, and
Yao
,
M.
,
2018
, “
The Effect of Combustion Chamber Geometry on in-Cylinder Flow and Combustion Process in a Stoichiometric Operation Natural Gas Engine With EGR
,”
Appl. Therm. Eng.
,
129
, pp.
199
211
.
15.
Johansson
,
B.
, and
Olsson
,
K.
,
1995
, “
Combustion Chambers for Natural Gas SI Engines Part 1: Fluid Flow and Combustion
,”
SAE
Paper No. 950469.
16.
Olsson
,
K.
, and
Johansson
,
B.
,
1995
, “
Combustion Chambers for Natural Gas SI Engines—Part 2: Combustion and Emissions
,”
SAE
Paper No. 950517.
17.
Ramasamy
,
D.
,
Noor
,
M. M.
,
Kadirgama
,
K.
,
Rahman
,
M. M.
, and
Horizon
,
W. G. B.
,
2015
, “
Analysis of Modifications on a Spark Ignition Engine for Operation With Natural Gas
,”
Third International Conference on Mechanical Engineering Research
(
ICMER
), Kuantan, Pahang, Malaysia, Aug. 18–19, p.
00031
.
18.
Cho
,
H. M.
, and
He
,
B. Q.
,
2008
, “
Combustion and Emission Characteristics of a Lean Burn Natural Gas Engine
,”
Int. J. Automot. Technol.
,
9
(
4
), pp.
415
422
.
19.
Hagos
,
F. Y.
,
Aziz
,
A. R. A.
,
Sulaiman
,
S. A.
, and
Firmansyah
,
2012
, “
Combustion Characteristics of Late Injected CNG in a Spark Ignition Engine Under Lean Operating Condition
,”
J. Appl. Sci.
,
12
(
23
), pp.
2368
2375
.
20.
Donateo
,
T.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2012
, “
On the Computer-Aided Conversion of a Diesel Engine to CNG-Dedicated or Dual Fuel Combustion Regime
,”
ASME
Paper No. ICES2012-81090.
21.
Donateo
,
T.
,
Tornese
,
F.
, and
Laforgia
,
D.
,
2013
, “
Computer-Aided Conversion of an Engine From Diesel to Methane
,”
Appl. Energy
,
108
, pp.
8
23
.
22.
Baumgartner
,
L. S.
,
Wohlgemuth
,
S.
,
Zirngibl
,
S.
, and
Wachtmeister
,
G.
,
2015
, “
Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications
,”
SAE Int. J. Engines
,
8
(
2
), pp.
921
933
.
23.
Unich
,
A.
,
Bata
,
R. M.
, and
Lyons
,
D. W.
,
1993
, “
Natural Gas: A Promising Fuel for I.C. Engines
,”
SAE
Paper No. 930929.
24.
Meyer
,
R.
,
Meyers
,
D.
,
Shahed
,
S. M.
, and
Duggal
,
V. K.
,
1992
, “
Development of a Heavy Duty on-Highway Natural Gas-Fueled Engine
,”
SAE
Paper No. 922362.
25.
ANSYS Inc.
,
2016
, “
ANSYS Forte Release 17.2, User Guide
,” ANSYS Inc., San Diego, CA.
26.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
CFD Simulation of Metal and Optical Configuration of a Heavy-Duty CI Engine Converted to SI Natural Gas—Part 1: Combustion Behavior
,”
SAE
Paper No. 2019-01-0002.
27.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,”
SAE
Paper No. 1999-01-0175.
28.
Tan
,
Z.
,
2004
, “
Multi-Dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (Direct Injection Spark/Compression Ignition) Engines
,” Ph.D. thesis, University of Wisconsin, Madison, WI.
29.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
15
.
30.
ANSYS
,
2016
, ANSYS Forte Release 17.2, Forte Theory, ANSYS Inc., San Diego, CA.
31.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
New York
.
32.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
33.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence—I: Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
34.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “
CFD Modeling of Spark Ignited Gasoline Engines—Part 1: Modeling the Engine Under Motored and Premixed-Charge Combustion Mode
,”
SAE
Paper No. 2016-01-0591.
35.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “
CFD Modeling of Spark Ignited Gasoline Engines—Part 2: Modeling the Engine in Direct Injection Mode Along With Spray Validation
,”
SAE
Paper No. 2016-01-0579.
36.
Liu
,
J.
,
Szybist
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
,”
SAE
Paper No. 2018-01-0183.
37.
Wahiduzzaman
,
S.
, and
Ferguson
,
C. R.
,
1986
, “
Convective Heat Transfer From a Decaying Swirling Flow Within a Cylinder
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, Paper No. 86-IHTC-253.
38.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
3D CFD Simulation of a CI Engine Converted to SI Natural Gas Operation Using the G-Equation
,”
Fuel
,
232
, pp.
833
844
.
39.
Zelodvich
,
Y.
,
Sadovinikov
,
P.
, and
Frank-Kamenetskii
,
D.
,
1947
,
Oxidation of Nitrogen in Combustion
,
Publishing House of the Acad of Sciences of USSR
,
Moscow-Leningrad, Russia
.
You do not currently have access to this content.