The response of a silicon carbide (SiC) fibrous ceramic composite to foreign object damage (FOD) was determined at ambient temperature and velocities ranging from 40 to 150 m/s. Target specimens were impacted, at a normal incidence angle and in a partially supported configuration, using 1.59 mm diameter hardened steel ball projectiles. Qualitative analysis of the damage morphologies of targets and projectiles was made via scanning electron microscopy (SEM). In addition, the extent of impact damage was characterized by determining the post-impact strength of each target specimen as a function of impact velocity. Relative to the as-received (As-R) strength, the fibrous composite showed limited strength degradation due to impact with the maximum reduction of 17% occurring at 150 m/s. A quasi-static analysis of the impact force prediction was also made based on the principle of energy conservation and the results were verified via experimental data.

References

1.
Kedir
,
N.
,
Faucett
,
D.
,
Sanchez
,
L.
, and
Choi
,
S. R.
,
2016
, “
Foreign Object Damage in an Oxide/Oxide Ceramic Matrix Composite Under Prescribed Tensile Loading
,”
ASME J. Eng. Gas Turbines Power.
,
139
(
2
), p.
021301
.
2.
Choi
,
S. R.
,
Wright
,
J. M.
,
Faucett
,
D.
, and
Ayre
,
M.
,
2014
, “
Phenomena of Foreign Object Damage by Spherical Projectiles in EB-PVD Thermal Barrier Coatings of Turbine Airfoils
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
102603
.
3.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
,
2004
, “
Foreign Object Damage in Flexure Bars of Two Gas-Turbine Grade Silicon Nitrides
,”
Mater. Sci. Eng. A
,
379
(
1–2
), pp.
411
419
.
4.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Phenomenon by Steel Ball Projectiles in a SiC/SiC Ceramic Matrix Composite at Ambient and Elevated Temperatures
,”
J. Am. Ceram. Soc
,
91
(
9
), pp.
2963
2968
.
5.
Choi
,
S. R.
,
Alexander
,
D. J.
, and
Kowalik
,
R. W.
,
2009
, “
Foreign Object Damage in an Oxide/Oxide Composite at Ambient Temperature
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021301
.
6.
Choi
,
S. R.
,
Faucett
,
D. C.
, and
Alexander
,
D. A.
,
2014
, “
Foreign Object Damage by Spherical Steel Projectiles in an N720/Alumina Oxide/Oxide Ceramic Matrix Composite
,”
J. Am. Ceram. Soc
,
97
(
12
), pp.
3926
3934
.
7.
Ogi
,
K.
,
Okabe
,
T.
,
Takahashi
,
M.
,
Yashiro
,
S.
, and
Yoshimura
,
A.
,
2010
, “
Experimental Characterization of High-Speed Impact Damage Behavior in a Three-Dimensionally Woven SiC/SiC Composite
,”
Compos. Part A: Appl. Sci. Manu.
,
41
(
4
), pp.
489
498
.
8.
Yashiro
,
S.
,
Ogi
,
K.
, and
Oshita
,
M.
,
2012
, “
High-Velocity Impact Damage Behavior of Plain-Woven SiC/SiC Composites After Thermal Loading
,”
Compos. Part B: Eng.
,
43
(
3
), pp.
1353
1362
.
9.
Leijiang
,
Y.
,
Ziyang
,
F.
, and
Qiyou
,
C.
,
2009
, “
Low Velocity Impact Damage Evaluation of 2D C/SiC Composite Material
,”
Adv. Mater. Res.
,
78–82
, pp.
1835
1838
.
10.
Phillips
,
D. C.
,
Park
,
N.
, and
Lee
,
R. J.
,
1990
, “
The Impact Behavior of High Performance Ceramic Matrix Composites
,”
Comp. Sci. Tech.
,
37
(
1–3
), pp.
249
265
.
11.
Abdi
,
F.
,
Xue
,
Y.
,
Morscher
,
G. N.
, and
Choi
,
S. R.
,
2014
, “
Quantification of Foreign Object Damage (FOD) and Electrical Resistivity for CMCs and Tensile Residual Strength Prediction
,”
ASME J. Eng. Gas Turbines Power
,
137
, p.
052503
.
12.
Choi
,
S. R.
,
2015
, “
Foreign Object Damage in Ceramic Matrix Composites
,”
Ch. 14 in Ceramic Matrix Composites—Materials, Modeling & Technology
,
N. P.
Bansal
, and
J.
Lamon
, ed.,
Wiley
,
Hoboken, NJ
.
13.
Kedir
,
N.
,
Faucett
,
D. C.
,
Sanchez
,
L.
, and
Choi
,
S. R.
,
2018
, “
Foreign Object Damage in a SiC Fibrous Composite
,”
Ceram. Trans.
,
261
, pp.
33
44
.
14.
Coblenz
,
W. S.
,
1988
, “
Fibrous Monolithic Ceramic and Method for Production
,” U.S. Patent No. 4,772,524.
15.
Popovic'
,
D.
,
Halloran
,
J. W.
,
Hilmas
,
G. E.
,
Brady
,
G. A.
,
Somas
,
S.
,
Bard
,
A.
, and
Zywicki
,
G.
,
1997
, “
Process for Preparing Textured Ceramic Composites
,” U.S. Patent No. 5,645,781.
16.
Baskaran
,
S.
,
Nunn
,
S. D.
,
Popovic
,
D.
, and
Halloran
,
J. W.
,
1993
, “
Fibrous Monolithic Ceramics—I: Fabrication, Microstructure, and Indentation Behavior
,”
J. Am. Ceram. Soc.
,
76
(
9
), pp.
2209
2216
.
17.
Baskaran
,
S.
, and
Halloran
,
J. W.
,
1993
, “
Fibrous Monolithic Ceramics—II: Flexural Strength and Fracture Behavior of the Silicon Carbide/Graphite System
,”
J. Am. Ceram. Soc.
,
76
(
9
), pp.
2217
2224
.
18.
Kovar
,
D.
,
King
,
B. H.
,
Trice
,
R. W.
, and
Halloran
,
J. W.
,
1997
, “
Fibrous Monolithic Ceramics
,”
J. Am. Ceram. Soc.
,
80
(
10
), pp.
2471
2487
.
19.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steel for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.
20.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Behavior in a Silicon Nitride Ceramic by Spherical Projectiles of Steels and Brass
,”
Mat. Sci. Eng.
,
A497
(
1–2
), pp.
160
167
.
21.
Brizmer
,
V.
,
Kligerman
,
I.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Sol. Struct.
,
43
(
18–19
), pp.
5736
5749
.
22.
Choi
,
S. R.
,
Racz
,
Z.
,
Bhatt
,
R. T.
, and
Brewer
,
D. N.
,
2006
, “
Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials
,” National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2006-214330(20016).
You do not currently have access to this content.